Skip to main content

Advertisement

Log in

Controlled synthesis of ultrasmall RuP2 particles on N,P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electrocatalytic hydrogen evolution reaction (HER) is a highly potential strategy to massively produce green hydrogen fuels. However, the employment of costly Pt-based electrocatalyst in the cathode of electrolyzer greatly hampers the development of hydrogen economy. Ruthenium phosphide catalysts have recently drawn wide attention due to the Pt-like activity but relatively lower cost. Herein, a facile strategy was proposed for the controlled preparation of the ultrasmall RuP2 nanoparticles on N,P-codoped carbon from common precursors of Ru (II) complex and phytic acid. By taking advantage of simple mixing and pyrolysis, the as-synthesized RuP2 nanoparticles were uniformly embedded onto the N,P-codoped carbon nanosheet. The composite catalyst shows better activity than Pt/C for alkaline HER and comparable activity for acidic and neutral HER. The superior activity can be ascribed to the ultrasmall-size and efficient RuP2 together with good mass and charge transfer ability assured by N,P-codoped carbon support. The advantages including low-cost and simple synthesis in this work present an encouraging substitute to replace commercial Pt/C for hydrogen-related practical applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chu S, Cui Y, Liu N. The path towards sustainable energy. Nat Mater. 2017;16(1):16.

    Article  Google Scholar 

  2. Staffell I, Scamman D, Abad AV, Balcombe P, Dodds PE, Ekins P, Shah N, Ward KR. The role of hydrogen and fuel cells in the global energy system. Energy Environ Sci. 2019;12(2):463.

    Article  CAS  Google Scholar 

  3. Zheng Y, Jiao Y, Jaroniec M, Qiao SZ. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew Chem Int Ed. 2015;54(1):52.

    Article  CAS  Google Scholar 

  4. Mallouk TE. Water electrolysis: divide and conquer. Nat Chem. 2013;5(5):362.

    Article  CAS  Google Scholar 

  5. Jiao Y, Zheng Y, Jaroniec M, Qiao SZ. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem Soc Rev. 2015;44(8):2060.

    Article  CAS  Google Scholar 

  6. Pranee P, Nisit T. Effect of plating bath composition on chemical composition and oxygen reduction reaction activity of electrodeposited Pt–Co catalysts. Rare Met. 2019;36(2):95.

    Google Scholar 

  7. Greeley J, Jaramillo TF, Bonde J, Chorkendorff I, Norskov JK. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nat Mater. 2006;5(11):909.

    Article  CAS  Google Scholar 

  8. Wang X, He J, Yu B, Sun B, Yang D, Zhang X, Zhang Q, Zhang W, Gu L, Chen Y. CoSe2 nanoparticles embedded MOF-derived Co–N–C nanoflake arrays as efficient and stable electrocatalyst for hydrogen evolution reaction. Appl Catal B-Environ. 2019;258:117996.

    Article  CAS  Google Scholar 

  9. Wang Z, Li Q, Xu H, Dahl-Petersen C, Yang Q, Cheng D, Cao D, Besenbacher F, Lauritsen JV, Helveg S, Dong M. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy. 2018;49:634.

    Article  CAS  Google Scholar 

  10. Zhou K, He J, Wang X, Lin J, Jing Y, Zhang W, Chen Y. Self-assembled CoSe2 nanocrystals embedded into carbon nanowires as highly efficient catalyst for hydrogen evolution reaction. Electrochim Acta. 2017;231:626.

    Article  CAS  Google Scholar 

  11. Lin J, He J, Qi F, Zheng B, Wang X, Yu B, Zhou K, Zhang W, Li Y, Chen Y. In-situ selenization of Co-based metal-organic frameworks as a highly efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2017;247:258.

    Article  CAS  Google Scholar 

  12. Qu K, Wang Y, Vasileff A, Jiao Y, Chen H, Zheng Y. Polydopamine-inspired nanomaterials for energy conversion and storage. J Mater Chem A. 2018;6(44):21827.

    Article  CAS  Google Scholar 

  13. Hou W, He J, Yu B, Lu Y, Zhang W, Chen Y. One-pot synthesis of graphene-wrapped NiSe2-Ni0.85Se hollow microspheres as superior and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2018;291:242.

    Article  CAS  Google Scholar 

  14. Guo T, Wang L, Sun S, Wang Y, Chen X, Zhang K, Zhang D, Xue Z, Zhou X. Layered MoS2@graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst. Chin Chem Lett. 2019;30(6):1253.

    Article  CAS  Google Scholar 

  15. Yang D, Liu Y, Wang B, He J, Chen Y. NiSe2 nanocrystals anchored graphene nanosheets as highly efficient and stable electrocatalyst for hydrogen evolution reaction in alkaline medium. J Alloys Compd. 2019;792:789.

    Article  CAS  Google Scholar 

  16. Wang Y, Wang S, Li R, Li H, Guo Z, Chen B, Li R, Yao Q, Zhang X, Chen H. A simple strategy for tridoped porous carbon nanosheet as superior electrocatalyst for bifunctional oxygen reduction and hydrogen evolution reactions. Carbon. 2020;162:586.

    Article  CAS  Google Scholar 

  17. Wang Z, Wu H-H, Li Q, Besenbacher F, Li Y, Zeng XC, Dong M. Reversing interfacial catalysis of ambipolar WSe2 single crystal. Adv Sci. 2020;7(3):1901382.

    Article  CAS  Google Scholar 

  18. Hua W, Sun H-H, Xu F, Wang J-G. A review and perspective on molybdenum-based electrocatalysts for hydrogen evolution reaction. Rare Met. 2020;39(4):335.

    Article  CAS  Google Scholar 

  19. Han S, Yun Q, Tu S, Zhu L, Cao W, Lu Q. Metallic ruthenium-based nanomaterials for electrocatalytic and photocatalytic hydrogen evolution. J Mater Chem A. 2019;7(43):24691.

    Article  CAS  Google Scholar 

  20. Lu B, Guo L, Wu F, Peng Y, Lu JE, Smart TJ, Wang N, Finfrock YZ, Morris D, Zhang P, Li N, Gao P, Ping Y, Chen S. Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media. Nat Commun. 2019;10(1):631.

    Article  CAS  Google Scholar 

  21. Pu Z, Amiinu IS, Kou Z, Li W, Mu S. RuP2-based catalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values. Angew Chem Int Ed. 2017;56(38):11559.

    Article  CAS  Google Scholar 

  22. Yu J, Guo Y, She S, Miao S, Ni M, Zhou W, Liu M, Shao Z. Bigger is surprisingly better: agglomerates of larger RuP nanoparticles outperform benchmark Pt nanocatalysts for the hydrogen evolution reaction. Adv Mater. 2018;30(39):1800047.

    Article  Google Scholar 

  23. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529.

    Article  CAS  Google Scholar 

  24. Chang Q, Ma J, Zhu Y, Li Z, Xu D, Duan X, Peng W, Li Y, Zhang G, Zhang F, Fan X. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction. ACS Sustain Chem Eng. 2018;6(5):6388.

    Article  CAS  Google Scholar 

  25. Qu K, Zheng Y, Zhang X, Davey K, Dai S, Qiao SZ. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms. ACS Nano. 2017;11(7):7293.

    Article  CAS  Google Scholar 

  26. Qu K, Zheng Y, Jiao Y, Zhang X, Dai S, Qiao SZ. Polydopamine-inspired, dual heteroatom-doped carbon nanotubes for highly efficient overall water splitting. Adv Energy Mater. 2016;7(9):1602068.

    Article  Google Scholar 

  27. Cheng M, Geng H, Yang Y, Zhang Y, Li CC. Optimization of the hydrogen-adsorption free energy of Ru-based catalysts towards high-efficiency hydrogen evolution reaction at all pH. Chem Eur J. 2019;25(36):8579.

    Article  CAS  Google Scholar 

  28. Li Y, Li S, Wang Y, Wang J, Liu H, Liu X, Wang L, Liu X, Xue W, Ma N. Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys Chem Chem Phys. 2017;19(18):11631.

    Article  CAS  Google Scholar 

  29. Qu K, Wang Y, Zhang X, Chen H, Li H, Chen B, Zhou H, Li D, Zheng Y, Dai S. Polydopamine-derived, in situ N-Doped 3D mesoporous carbons for highly efficient oxygen reduction. ChemNanoMat. 2018;4(4):417.

    Article  CAS  Google Scholar 

  30. Qin Q, Jang H, Chen L, Nam G, Liu X, Cho J. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv Energy Mater. 2018;8(29):1801478.

    Article  Google Scholar 

  31. Qu K, Zheng Y, Dai S, Qiao SZ. Graphene oxide-polydopamine derived N, S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy. 2016;19:373.

    Article  CAS  Google Scholar 

  32. Guo L, Luo F, Guo F, Zhang Q, Qu K, Yang Z, Cai W. Robust hydrogen evolution reaction catalysis by ultrasmall amorphous ruthenium phosphide nanoparticles. Chem Commun. 2019;55(53):7623.

    Article  CAS  Google Scholar 

  33. Xue S, Liu Z, Ma C, Cheng H, Ren W. A highly active and durable electrocatalyst for large current density hydrogen evolution reaction. Sci Bull. 2020;65(2):123.

    Article  CAS  Google Scholar 

  34. Zheng Y, Jiao Y, Zhu Y, Li LH, Han Y, Chen Y, Jaroniec M, Qiao SZ. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J Am Chem Soc. 2016;138(49):16174.

    Article  CAS  Google Scholar 

  35. Hu H, Zhang Q, Luo F, Guo L, Qu K, Yang Z, Xiao S, Xu Z, Cai W, Cheng H. Fe@Fe2P core-shell nanorods encapsulated in nitrogen doped carbon nanotubes as robust and stable electrocatalyst toward hydrogen evolution. ChemElectroChem. 2019;6(5):1413.

    Article  CAS  Google Scholar 

  36. Mahmood J, Li F, Jung S, Okyay MS, Ahmad I, Kim S, Park N, Jeong HY, Baek J. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotech. 2017;12(5):441.

    Article  CAS  Google Scholar 

  37. Zhai T, Zhu Y, Li Y, Peng W, Zhang G, Zhang F, Fan X. Ultra-small RuPx nanoparticles on graphene supported Schiff-based networks for all pH hydrogen evolution. Int J Hydrog Energy. 2019;44(12):5717.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 21601078), the Natural Science Foundation of Shandong Province (Nos. ZR2016BQ21 and ZR2019MB064), Development Project of Youth Innovation Team in Shandong Colleges and Universities (No. 2019KJC031), Doctoral Fund of Shandong Province (No. K19LB1201) and Doctoral Program of Liaocheng University (No. 318051608).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Zheng or Kong-Gang Qu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 9,412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Li, RQ., Li, HB. et al. Controlled synthesis of ultrasmall RuP2 particles on N,P-codoped carbon as superior pH-wide electrocatalyst for hydrogen evolution. Rare Met. 40, 1040–1047 (2021). https://doi.org/10.1007/s12598-020-01665-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01665-1

Keywords

Navigation