Skip to main content

Advertisement

Log in

Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The acidic, corrosive effect of sodium polystyrene sulfonate (PSS) in poly 3,4-ethylenedioxythiophene:sodium polystyrene sulfonate (PEDOT:PSS) limits the stability of inverted perovskite solar cells (PSCs) based on the ITO/PEDOT:PSS/perovskite/PCBM/BCP/Ag structure. In this work, a poly 3,4-ethylenedioxythiophene (PEDOT) hole transport layer (HTL) with high hole mobility and good catalytic performance was prepared by electrochemical cyclic voltammetry (CV) method for inverted PSCs. By controlling the CV cycles (from 1 to 5 cycles) and EDOT monomer solution concentration (from 0.5 to 2.0 mmol·L−1) of electrochemical deposition, the thickness, morphology, optical and electrochemical properties of PEDOT could be accurately adjusted. The optimal photovoltaic performance with current density (Jsc) of 22.19 mA·cm−2, open circuit voltage (Voc) of 0.94 V, fill factor (FF) of 0.65 and photoelectric conversion efficiency of 13.56% was obtained when deposition of PEDOT with 1 CV cycle and EDOT concentration of 0.5 mmol·L−1. At this point, the perovskite showed good crystallization, optimal optical, charge transport and recombination performance, resulting in better Voc and photoelectric conversion efficiency (PCE) compared to the devices with higher CV cycle numbers and 3,4-ethylenedioxythiophene (EDOT) concentration. For comparison with spin-coated PEDOT:PSS, the device with electrodeposited PEDOT showed improved Jsc and comparable Voc, which may result from its better charge transport and catalytic ability. The device with spin-coated PEDOT:PSS showed photoelectric conversion efficiency of 12.25%, which was lower than that based on electrodeposited PEDOT (13.56%) with 1 CV cycles and 0.5 mmol·L−1 EDOT concentration. And the device with electrodeposited PEDOT as HTLs showed more excellent air stability. In ambient air ((32 ± 5) °C and RH: 70% ± 20%), it still maintained more than 80% of the initial photoelectric conversion efficiency after 1000 h. In comparison, the photoelectric conversion efficiency of the device with PEDOT:PSS decreased to 20% of the initial value after storage for 500 h. From this study, a facial and low-cost way to prepare PEDOT HTL with high performances that better than the traditional PEDOT:PSS has been explored, which is expected to eliminate the acidic, corrosive effect of PSS in PEDOT:PSS.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2020, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.

    Article  CAS  Google Scholar 

  2. Jumabekov AN. Chemical passivation of the perovskite layer and its real-time effect on the device performance in back-contact perovskite solar cells. J Vac Sci Technol A. 2020;38(6):060401.

    Article  CAS  Google Scholar 

  3. Snaith HJ, Abate A, Ball JM, Henry J, Eperon GE, Leijtens T, Noel NK, Stranks SD, Wang JTW, Wojciechowski K, Zhang W. Anomalous hysteresis in perovskite solar cells. J Phys Chem Lett. 2014;5(9):1511.

    Article  CAS  Google Scholar 

  4. Hou Y, Du X, Scheiner S, McMeekin DP, Wang Z, Li N, Killian MS, Chen H, Richter M, Levchuk I, Schrenker N, Spiecker E, Stubhan T, Luechinger NA, Hirsch A, Schmuki P, Steinrück HP, Fink RH, Halik M, Snaith HJ, Brabec CJ. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science. 2017;358(6367):1192.

    Article  CAS  Google Scholar 

  5. Galagan Y, Di GF, Gorter H, Kirchner G, Vries I, Andriessen R, Groen P. Roll-to-roll slot die coated perovskite for efficient flexible solar cells. Adv Energy Mater. 2018;8(32):1801935.

    Article  Google Scholar 

  6. Bu T, Li J, Zheng F, Chen W, Wen X, Ku Z, Peng Y, Zhong J, Cheng Y-B, Huang F. Universal passivation strategy to slot-die printed SnO2 for hysteresis-free efficient flexible perovskite solar module. Nat Commun. 2018;9(1):4609.

    Article  Google Scholar 

  7. Huang F, Li M, Siffalovic P, Cao G, Tian J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ Sci. 2019;12(2):518.

    Article  CAS  Google Scholar 

  8. Heo JH, Han HJ, Kim D, Ahn TK, Im SH.: Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency. Energy Environ Sci. 2015;8(5);1602.

  9. Mabrouk S, Zhang M, Wang Z, Mao L, Bahrami B, Wu Y, Wu J, Qiao Q, Yang S. Dithieno[3,2-b:2′,3′-d]pyrrole-based hole transport materials for perovskite solar cells with efficiencies over 18%. J Mater Chem A. 2018;6(17):7950.

    Article  CAS  Google Scholar 

  10. Dubey A, Adhikari N, Venkatesan S, Gu S, Khatiwada D, Wang Q, Mohammad L, Kumar M, Qiao Q. Solution processed pristine PDPP3T polymer as hole transport layer for efficient perovskite solar cells with slower degradation. Sol Energy Mater Sol Cells. 2016;145(3):193.

    Article  CAS  Google Scholar 

  11. Gaml EA, Dubey A, Reza KM, Hasan MN, Adhikari N, Elbohy H, Bahrami B, Zeyada H, Yang S, Qiao Q. Alternative benzodithiophene (BDT) based polymeric hole transport layer for efficient perovskite solar cells. Sol Energy Mater Sol Cells. 2017;168:8.

    Article  CAS  Google Scholar 

  12. Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Ghimire RP, Wang X, Sun Z, Xue S, Qiao Q. Influence of nonfused cores on the photovoltaic performance of linear triphenylamine-based hole-transporting materials for perovskite solar cells. ACS Appl Mater Interfaces. 2018;10(21):17883.

    Article  CAS  Google Scholar 

  13. Shi H, Liu CC, Jiang QL, Xu JK. Effective Approaches to Improve the Electrical Conductivity of PEDOT:PSS: A Review. Adv Electron Mater. 2015;1(4):1500017.

    Article  Google Scholar 

  14. Rajagopal P, Mathan KP, Muthuraaman B. Improved performance of dye-sensitized solar cells upon sintering of a PEDOT cathode at various temperatures. RSC Adv. 2020;10(8):4521.

    Article  Google Scholar 

  15. Lee TW, Chung YS. Control of the surface composition of a conducting-polymer complex film to tune the work function. Adv Funct Mater. 2008;18(15):2246.

    Article  CAS  Google Scholar 

  16. Song DH, Jang MH, Lee MH, Heo JH, Park JK, Sung SJ, Kim DH, Hong KH, Im SH. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells. J Phys D: Appl Phys. 2016;49(47):473001.

    Article  Google Scholar 

  17. Würfel U, Neher D, Spies A, Albrecht S. Impact of charge transport on current–voltage characteristics and power-conversion efficiency of organic solar cells. Nat Commun. 2015;6:6951.

    Article  Google Scholar 

  18. Kim W, Kim S, Chai SU, Jung MS, Nam JK, Kim JH, Park JH. Thermodynamically self-organized hole transport layers for high-efficiency inverted-planar perovskite solar cells. Nanoscale. 2017;9(34):12677.

    Article  CAS  Google Scholar 

  19. Chen K, Hu Q, Liu T, Zhao L, Luo D, Wu J, Zhang Y, Zhang W, Liu F, Russell TP. Charge-carrier balance for highly efficient inverted planar heterojunction perovskite solar cells. Adv Mater. 2016;28(48):10718.

    Article  CAS  Google Scholar 

  20. Huang D, Goh T, Kong J, Zheng Y, Zhao S, Xu Z, Taylor A. Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale. 2017;9(12):4236.

    Article  CAS  Google Scholar 

  21. Yoon S, Ha TJ, Kang DW. Improving the performance and reliability of inverted planar perovskite solar cells with a carbon nanotubes/PEDOT:PSS hybrid hole collector. Nanoscale. 2017;9(27):9754.

    Article  CAS  Google Scholar 

  22. Liu D, Li Y, Yuan J, Hong Q, Shi G, Yuan D, Wei J, Huang C, Tang J, Fung MK. Improved performance of inverted planar perovskite solar cells with F4-TCNQ doped PEDOT:PSS hole transport layers. J Mater Chem A. 2017;5(12):5701.

    Article  CAS  Google Scholar 

  23. Hu L, Sun K, Wang M, Chen W, Yang B, Fu J, Xiong Z, Li X, Tang X, Zang Z, Zhang S, Sun L, Li M. Inverted planar perovskite solar cells with a high fill factor and negligible hysteresis by the dual effect of NaCl-doped PEDOT:PSS. ACS Appl Mater Interfaces. 2017;9(50):43902.

    Article  CAS  Google Scholar 

  24. Niu JZ, Yang D, Ren XD, Yang Z, Liu YC, Zhu XJ, Zhao WG, Liu SZ. Graphene-oxide doped PEDOT:PSS as a superior hole transport material for high-efficiency perovskite solar cell. Org Electron. 2017;48:165.

    Article  CAS  Google Scholar 

  25. Malinkiewicz O, Yella A, Lee YH, Espallargas GM, Graetzel M, Nazeeruddin MK, Bolink HJ. Perovskite solar cells employing organic charge-transport layers. Nat Photonics. 2013;8(2):128.

    Article  Google Scholar 

  26. Mabrouk S, Bahrami B, Elbohy H, Reza KM, Gurung A, Liang M, Wu F, Wang M, Yang S, Qiao Q. Synergistic engineering of hole transport materials in perovskite solar cells. Infomat. 2019;2(5):928.

    Article  Google Scholar 

  27. Reza KM, Gurung A, Bahrami B, Mabrouk S, Elbohy H, Pathak R, Chen K, Chowdhury AH, Rahman MT, Letourneau S, Yang HC, Saianand G, Jeffrey WE, Seth BD, Qiao Q. Tailored PEDOT:PSS hole transport layer for higher performance in perovskite solar cells: enhancement of electrical and optical properties with improved morphology. J Energy Chem. 2020;44:41.

    Article  Google Scholar 

  28. Petraki F, Kennou S, Nespurek S, Biler M. A spectroscopic study for the application of a PEDOT-type material as buffer layer in electronic devices. Org Electron. 2010;11(8):1423.

    Article  CAS  Google Scholar 

  29. Somboonsub B, Srisuwan S, Invernale MA, Thongyai S, Praserthdam P, Scola DA, Sotzing GA. Comparison of the thermally stable conducting polymers PEDOT, PANi, and PPy using sulfonated poly(imide) templates. Polymer. 2010;51(20):4472.

    Article  CAS  Google Scholar 

  30. Fernandes DM, Brett CMA, Cavaleiro AMV. Preparation and electrochemical properties of modified electrodes with Keggin-type silicotungstates and PEDOT. J Electroanal Chem. 2011;660(1):50.

    Article  CAS  Google Scholar 

  31. Bhandari S, Deepa M, Srivastava AK, Lal C, Kant R. Poly(3,4-ethylenedioxythiophene) (PEDOT)-coated MWCNTs tethered to conducting substrates: facile electrochemistry and enhanced coloring efficiency. Macromol Rapid Commun. 2008;29(24):1959.

    Article  CAS  Google Scholar 

  32. Erazo EA, Daniel CB, Pablo O, María TC. NaCl doped electrochemical PEDOT:PSS layers for inverted perovskite solar cells with enhanced stability. Synthetic Met. 2019;257:116178.

    Article  CAS  Google Scholar 

  33. Li S, Chen L, Zhang K, Wu S, Shen X, Zhao J. Doped the electropolymerized PEDOT for high performance and air stable Si/organic solar cells. Org Electron. 2018;59:1.

    Article  Google Scholar 

  34. Zhang J, Li X, Guo W, Hreid T, Hou J, Su H, Yuan Z. Electropolymerization of a poly(3,4-ethylenedioxythiophene) and functionalized, multi-walled, carbon nanotubes counter electrode for dye-sensitized solar cells and characterization of its performance. Electrochim Acta. 2011;56(9):3147.

    Article  CAS  Google Scholar 

  35. Yang MG, Zhang TY, Schulz P, Li Z, Li G, Kim DH, Guo NJ, Berry JJ, Zhu K, Zhao YX. Facile fabrication of large-grain CH3NH3PbI3-xBrx films for high-efficiency solar cells via CH3NH3Br selective Ostwald ripening. Nat Commun. 2016;7:12305.

    Article  CAS  Google Scholar 

  36. Fang H, Hou S, Chen H. Investigation on the electrochemical polymerization and electrochemical behavior of 3,4-ethylenedioxy-thiophene in aqueous solution. Electrochim Acta. 1995;53(7):710.

    CAS  Google Scholar 

  37. Xiao YM, Lin JY, Wu JH, Tai SY, Yue GT. Pulse potentiostatic electropolymerization of high performance PEDOT counter electrodes for Pt-free dye-sensitized solar cells. Electrochim Acta. 2012;83:221.

    Article  CAS  Google Scholar 

  38. Wang Y, Wan J, Ding J, Hu JS, Wang D. A rutile TiO2 electron transport layer for the enhancement of charge collection for efficient perovskite solar cells. Angew Chem Int Ed. 2019;58(28):9414.

    Article  CAS  Google Scholar 

  39. Song D, Wei D, Cui P, Li M, Duan Z, Wang T, Jun J, Li Y, Mbengue JM, Li Y, He Y, Trevor M, Park NG. Dual function interfacial layer for highly efficient and stable lead halide perovskite solar cells. J Mater Chem A. 2016;4(16):6091.

    Article  CAS  Google Scholar 

  40. Niu G, Yu H, Li J, Wang D, Wang L. Controlled orientation of perovskite films through mixed cations toward high performance perovskite solar cells. Nano Energy. 2016;27:87.

    Article  CAS  Google Scholar 

  41. Rong YG, Liu LF, Mei AY, Li X, Han HW. Beyond efficiency: the challenge of stability in mesoscopic perovskite solar cells. Adv Energy Mater. 2015;5(20):1501066.

    Article  Google Scholar 

  42. Yan L, Xue QF, Liu MY, Zhu ZL, Tian JJ, Li ZC, Chen Z, Chen ZM, Yan H, Yip HL, Cao Y. Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%. Adv Mater. 2018;30(33):1802509.

    Article  Google Scholar 

  43. Xiang W, Wang Z, Kubicki DJ, Tress WG, Luo JS, Daniel P, Akin S, Emsley L, Zhou J, Dietler G, Grätzel M, Hagfeldt A. Europium-doped CsPbI2Br for stable and highly efficient inorganic perovskite solar cells. Joule. 2019;3(1):205.

    Article  CAS  Google Scholar 

  44. Liang PW, Liao CY, Chueh CC, Zuo F, Williams ST, Xin XK, Lin J, Jen AKY. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater. 2014;26(22):3748.

    Article  CAS  Google Scholar 

  45. Yang Y, Chen T, Pan D, Gao J, Zhu C, Lin F, Zhou C, Tai Q, Xiao S, Yb Y, Dai Q, Han Y, Xie H, Guo X. MAPbI3/agarose photoactive composite for highly stable unencapsulated perovskite solar cells in humid environment. Nano Energy. 2020;67:104246.

    Article  CAS  Google Scholar 

  46. Xiao Y, Han G, Wu J, Lin JY. Efficient bifacial perovskite solar cell based on a highly transparent poly(3,4-ethylenedioxythiophene) as the p-type hole-transporting material. J Power Sources. 2016;306:171.

    Article  CAS  Google Scholar 

  47. Guerrero A, Belmonte GG, Sero IM, Bisquert J, Kang YS, Jacobsson TJ, Baena JPC, Hagfeldt A. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J Phys Chem C. 2016;120(15):8023.

    Article  CAS  Google Scholar 

  48. Phama ND, Tionga VT, Yao DS, Martens W, Guerrero A, Bisquert J, Wang HX. Guanidinium thiocyanate selective ostwald ripening induced large grain for high performance perovskite solar cells. Nano Energy. 2017;41:476.

    Article  Google Scholar 

  49. Yang Y, Gao J, Zhang Z, Xiao S, Xie HH, Sun ZB, Wang JH, Zhou CH, Wang W, Chu GX, PK. Yu XF. Photocathodes: black phosphorus based photocathodes in wideband bifacial dye-sensitized solar cells. Adv Mater. 2016;28(40):8937.

    Article  CAS  Google Scholar 

  50. Luo H, Wu J, Liu X, Yang Y, Liu Q, Zhang M, Yuan P, Sun W, Lan Z, Lin J. Thiourea interfacial modification for hghly efficient planar perovskite solar cells. ACS Appl Energy Mater. 2018;1(12):6700.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 61774169) and Qingyuan Innovation and Entrepreneurship Research Team Project (No. 2018001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, CT., Yang, Y., Lin, FY. et al. Electrodeposited transparent PEDOT for inverted perovskite solar cells: improved charge transport and catalytic performances. Rare Met. 40, 2402–2414 (2021). https://doi.org/10.1007/s12598-020-01641-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01641-9

Keywords

Navigation