Skip to main content
Log in

Direct chemical vapor deposition growth of graphene on Ni particles using solid carbon sources

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Graphene has attained a considerable amount of popularity as an attractive ultra-thin reinforcement for nickel (Ni) matrix composites in recent years. However, its excellent reinforcement efficiency is suffered from the agglomeration of graphene nanosheets in manufacturing process and the poor bonding strength of graphene with Ni matrix. To overcome these two problems, one of the efficient strategies is to in-situ grow graphene reinforcements on Ni particles for powder metallurgy. This work aims to synthesize uniform graphene@Ni composite particles by using polymethyl methacrylate (PMMA) as the solid sources for chemical vapor deposition (CVD) process. The results demonstrate that few-layer or multilayer graphene with different morphologies can be grown on the particles by controlling the PMMA content and annealed temperature, respectively. The optimum condition for the formation of high-quality few-layer graphene is 1.0 mg·ml−1 PMMA and 900 °C. A competition mechanism rises from the growth kinetic, and the spatial confinement effect has led to the formation of graphene with different microstructures and morphologies.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen DR, Chiu SK, Wu MP, Hsu CC, Ting CC, Hofmann M, Hsieh YP. Ink-jet patterning of graphene by cap assisted barrier-guided CVD. RSC Adv. 2019;9(29):105.

    Google Scholar 

  2. Liu A, Xia Z, Zhou W, Huang S. Well-dispersed hematite nanoparticles decorating graphene nanosheets: characterization and performance for methyl orange removal. J Environ Chem Eng. 2017;5(6):6039.

    Article  CAS  Google Scholar 

  3. Gnisci A, Shi J. Ethanol-CVD growth of sub-mm single-crystal graphene on flat Cu surfaces. J Phys Chem C. 2018;122(50):28830.

    Article  CAS  Google Scholar 

  4. Chen ZP, Ren WC, Liu LB, Gao LB, Pei SF, Wu ZS, Zhao JP, Cheng HM. Bulk growth of mono- to few-layer graphene on nickel particles by chemical vapor deposition from methane. Carbon. 2010;48(12):3543.

    Article  CAS  Google Scholar 

  5. Chen XP, Zhang LL, Chen SS. Large area CVD growth of graphene. Synthetic Met. 2015;210:95.

    Article  CAS  Google Scholar 

  6. Bhadauria A, Singh LK, Laha T. Combined strengthening effect of nanocrystalline matrix and graphene nanoplatelet reinforcement on the mechanical properties of spark plasma sintered aluminum based nanocomposites. Mater Sci Eng A Struct. 2019;749:14.

    Article  CAS  Google Scholar 

  7. Zhang X, Xu CY, Liu BX, Ji PG, He JN, Wang GK, Yin FX. Thickness effect of graphene film on optimizing the interface and mechanical properties of Cu/Ni multilayer composites. Mater Sci Eng A Struct. 2020;798:140111.

    Article  CAS  Google Scholar 

  8. Zhang XH, Li XX, Liu WJ, Fan YQ, Che H, Liang TX. Preparation and tribological behavior of electrodeposited Ni-W-GO composite coatings. Rare Met. 2019;38(7):695.

    Article  CAS  Google Scholar 

  9. Liu YY, Liu Y, Zhang Q, Zhang CL, Wang J, Wu YX, Han PD, Gao ZP, Wang LP, Wu XL. Control of the microstructure and mechanical properties of electrodeposited graphene/Ni composite. Mater Sci Eng A Struct. 2018;727:133.

    Article  CAS  Google Scholar 

  10. Yoo SC, Lee J, Hong SH. Synergistic outstanding strengthening behavior of graphene/copper nanocomposites. Compos B Eng. 2019;176:107235.

    Article  CAS  Google Scholar 

  11. Zhou BY, Fan SJ, Fan YC, Zheng Q, Zhang X, Jiang W, Wang LJ. Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets. Rare Met. 2020;39(5):513.

    Article  CAS  Google Scholar 

  12. Zhang X, Shi CS, Liu EZ, He F, Ma LY, Li QY, Li JJ, Bacsa ZNQ, He CN. Achieving high strength and high ductility in metal matrix composites reinforced with adiscontinuous three-dimensional graphene-like network. Nanoscale. 2017;9:11929.

    Article  CAS  Google Scholar 

  13. Li JL, Wang XD, Wu Y, Cao Z, Guo JQ, Zhang HP. Microstructure and mechanical properties of aluminium–matrix composite with different graphene contents. Chin J Rare Met. 2018;42(3):252.

    Google Scholar 

  14. Zhao T, Liu ZB, Xin X, Cheng HM, Ren WC. Defective graphene as a high-efficiency Raman enhancement substrate. J Mater Sci Technol. 2019;35(9):1996.

    Article  Google Scholar 

  15. Madito MJ, Matshoba KS, Ochai-Ejeh FU, Mongwaketsi N, Mtshali CB, Fabiane M, Manyala N. Nickel–copper graphene foam prepared by atmospheric pressure chemical vapour deposition for supercapacitor applications. Surf Coat Tech. 2020;383:125230.

    Article  CAS  Google Scholar 

  16. Son M, Ham MH. Low-temperature synthesis of graphene by chemical vapor deposition and its applications. FlatChem. 2017;5:40.

    Article  CAS  Google Scholar 

  17. Nagai Y, Sugime H, Noda S. Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chem Eng Sci. 2019;201:319.

    Article  CAS  Google Scholar 

  18. Li Y, Wang GF, Liu Q, Yang M. Ni/GO nanocomposites and its plasticity. Manuf Rev. 2015;2:1.

    Google Scholar 

  19. Li MX, Che HW, Liu XY, Liang SX, Xie HL. Highly enchanced mechanical properties in Cu matrix composites reinforced with graphene decorated metallic nanoparticles. J Mater Sci. 2014;49:3725.

    Article  CAS  Google Scholar 

  20. Liu P, Zhu EF, Yan CX, Ling ZC, Shi QN. Strength and electrical properties of graphene reinforced copper matrix composites with different nickel contents. Chin J Rare Met. 2018;42(7):735.

    Google Scholar 

  21. Hu Z, Tong G, Lin D, Chen C, Guo H, Xu J, Zhou L. Graphene-reinforced metal matrix nanocomposites—a review. Mater Sci Tech Load. 2016;32(9):1.

    Google Scholar 

  22. Wang LD, Cui Y, Li B, Yang S, Li RY, Vajtai R, Fei WD. High apparent strengthening efficiency for reduced graphene oxide in copper matrix composites produced by molecule-level mixing and high-shear mixing. RSC Adv. 2015;5(63):51193.

    Article  CAS  Google Scholar 

  23. Jiang JL, He XX, Du JF, Pang XJ, Yang H, Wei ZQ. In-situ fabrication of grapheme–nickel matrix composites. Mater Lett. 2018;220:178.

    Article  CAS  Google Scholar 

  24. Fu K, Zhang X, Shi CS, Liu EZ, He F, Li JJ, Zhao NQ, He CN. An approach for fabrication Ni@graphene reinforced nickel matrix composites with enhanced mechanical properties. Mater Sci Eng A Struct. 2018;715:108.

    Article  CAS  Google Scholar 

  25. Janthon P, Viñes F, Sirijaraensre J, Limtrakul J, Illas F. Carbon dissolution and segregation in platinum. Catal Sci Technol. 2017;7(4):807.

    Article  CAS  Google Scholar 

  26. Gawlik G, Ciepielewski P, Baranowski JM. Study of implantation defects in CVD graphene by optical and electrical methods. Appl Sci Basel. 2019;9:544.

    Article  CAS  Google Scholar 

  27. Hao YF, Wang YY, Wang L, Ni ZH, Wang ZQ, Wang R, Koo CK, Shen ZX, Thong JTL. Probing layer number and stacking order of few-layer graphene by Raman spectroscopy. Small. 2010;6(2):195.

    Article  CAS  Google Scholar 

  28. Bousmina M. In: Jawaid M, Bouhfid R, Qaiss AEK, editors. Functionalized graphene nanocomposites and their derivatives: synthesis, processing and applications. Oxford: Elsevier; 2018. 1.

    Google Scholar 

  29. Liu X, Fu L, Liu N, Gao T, Zhang YF, Liao L, Liu ZF. Segregation growth of graphene on Cu–Ni alloy for precise layer control. J Phys Chem C. 2011;115:11976.

    Article  CAS  Google Scholar 

  30. Shen C, Yan XZ, Qing FZ, Niu XB, Stehle R, Mao SS, Zhang WL, Li XS. Criteria for the growth of large-area adlayer-free monolayer graphene films by chemical vapor deposition. J Materiomics. 2019;5(3):463.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51801133, U1860204 and 51871159), the Natural Science Foundation of Shanxi Province (Nos. 201801D221125 and 201801D221135) and the Undergraduate Training Program for Innovation and Entrepreneurship of Shanxi Province (No. 201808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Liu or Cai-Li Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Liu, Y., Zhang, CL. et al. Direct chemical vapor deposition growth of graphene on Ni particles using solid carbon sources. Rare Met. 40, 2275–2280 (2021). https://doi.org/10.1007/s12598-020-01610-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01610-2

Keywords

Navigation