Skip to main content
Log in

Synthesis and NH3/TMA sensing properties of CuFe2O4 hollow microspheres at low working temperature

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, CuFe2O4 hollow microspheres assembled with nanosheets (CuFe2O4 HMANs) were synthesized using a solvothermal method followed by an annealing treatment. The effects of annealing temperature on microstructure, chemical composition and gas sensing characteristics of as-prepared samples were investigated. The results showed that annealing treatment played a crucial role in the final products. All samples demonstrated hollow spherical morphology assembled with nanosheets or nanoparticles. The CuFe2O4 HMANs annealed at 400 °C exhibited the best n-type conductometric sensing properties toward low-concentration NH3 at 100 °C and 49%RH. The sensor response to 10 × 10−6 NH3 was 4.0 with a rapid response time of 32 s, and it even showed a response of 1.2 toward 1 × 10−6 NH3 at the same condition, while a response of 3.95 to trimethylamine (TMA). The CuFe2O4 HMANs-based NH3 sensor also exhibited good selectivity and excellent reproducibility. Therefore, this work provided a novel promised sensing material of low-concentration NH3 and TMA for real-time monitoring.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Timm M, Jorgensen BM. Simultaneous determination of ammonia, dimethylamine, trimethylamine and trimethylamine-N-oxide in fish extracts by capillary electrophoresis with indirect UV-detection. Food Chem. 2002;76(4):509.

    CAS  Google Scholar 

  2. Wells N, Yusufu D, Mills A. Colourimetric plastic film indicator for the detection of the volatile basic nitrogen compounds associated with fish spoilage. Talanta. 2019;194:830.

    CAS  Google Scholar 

  3. Liu XY, Chen KK, Wang JY, Wang Y, Tang YW, Gao X, Zhu LJ, Li XP, Li JR. An on-package colorimetric sensing label based on a sol–gel matrix for fish freshness monitoring. Food Chem. 2020;307:125580.

    CAS  Google Scholar 

  4. Jung JY, Lee CS. Characteristics of the TiO2/SnO2 thick film semiconductor gas sensor to determine fish freshness. J Ind Eng Chem. 2011;17(2):237.

    CAS  Google Scholar 

  5. Tang XX, Yu Z. Rapid evaluation of chicken meat freshness using gas sensor array and signal analysis considering total volatile basic nitrogen. Int J Food Prop. 2020;23(1):297.

    CAS  Google Scholar 

  6. Prabhakar PK, Vatsa S, Srivastav PP, Pathak SS. A comprehensive review on freshness of fish and assessment: analytical methods and recent innovations. Food Res Int. 2020;133:109157.

    CAS  Google Scholar 

  7. Li ZJ, Lin ZJ, Wang NN, Wang JQ, Liu W, Sun K, Fu YQ, Wang ZG. High precision NH3 sensing using network nano-sheet Co3O4 arrays based sensor at room temperature. Sensor Actuat B-Chem. 2016;235:222.

    CAS  Google Scholar 

  8. Timmer B, Olthuis W, van den Berg A. Ammonia sensors and their applications—a review. Sensor Actuat B-Chem. 2005;107(2):666.

    CAS  Google Scholar 

  9. Liu CH, Tai HL, Zhang P, Yuan Z, Du XS, Xie GZ, Jiang YD. A high-performance flexible gas sensor based on self-assembled PANI-CeO2 nanocomposite thin film for trace-level NH3 detection at room temperature. Sensor Actuat B-Chem. 2018;261:587.

    CAS  Google Scholar 

  10. Chang LY, Chuan MY, Zan HW, Meng HF, Lu CJ, Yeh PH, Chen JN. One-minute fish freshness evaluation by testing the volatile amine gas with an ultrasensitive porous-electrode-capped organic gas sensor system. ACS Sensors. 2017;2(4):531.

    CAS  Google Scholar 

  11. Chung WY, Le GT, Tran TV, Nguyen NH. Novel proximal fish freshness monitoring using batteryless smart sensor tag. Sensor Actuat B-Chem. 2017;248:910.

    CAS  Google Scholar 

  12. Zhang YN, Lim LT. Colorimetric array indicator for NH3 and CO2 detection. Sensor Actuat B-Chem. 2018;255:3216.

    CAS  Google Scholar 

  13. Shahabuddin M, Sharma A, Kumar J, Tomar M, Umar A, Gupta V. Metal clusters activated SnO2 thin film for low level detection of NH3 gas. Sensor Actuat B-Chem. 2014;194:410.

    CAS  Google Scholar 

  14. Haridas V, Sukhananazerin A, Sneha JM, Pullithadathil B, Narayanan B. Alpha-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Appl Surf Sci. 2020;517:146158.

    CAS  Google Scholar 

  15. Nguyen VH, Vu VQ, Nguyen DH, Kim D. Preparing large-scale WO3 nanowire-like structure for high sensitivity NH3 gas sensor through a simple route. Curr Appl Phys. 2011;11(3):657.

    Google Scholar 

  16. Shingange K, Tshabalala ZP, Ntwaeaborwa OM, Motaung DE, Mhlongo GH. Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-assisted method. J Colloid Interface Sci. 2016;479:127.

    CAS  Google Scholar 

  17. Wang JQ, Li ZJ, Zhang S, Yan SN, Cao BB, Wang ZG, Fu YQ. Enhanced NH3 gas-sensing performance of silica modified CeO2 nanostructure based sensors. Sensor Actuat B-Chem. 2018;255:862.

    CAS  Google Scholar 

  18. Trung DD, Cuong ND, Trung KQ, Nguyen TD, Toan NV, Hung CM, Hieu NV. Controlled synthesis of manganese tungstate nanorods for highly selective NH3 gas sensor. J Alloys Compd. 2018;735:787.

    CAS  Google Scholar 

  19. Hung CM, Dat DQ, Duy NV, Quang VV, Toan NV, Hieu NV, Hoa ND. Facile synthesis of ultrafine rGO/WO3 nanowire nanocomposites for highly sensitive toxic NH3 gas sensors. Mater Res Bull. 2020;125:110810.

    CAS  Google Scholar 

  20. Liang F, Liu J. Photoluminescence properties of hexagonal indium tin oxide nanopowders prepared by solvothermal method. Rare Met. 2018;37(1):47.

    CAS  Google Scholar 

  21. Zhang QX, Ma SY, Zhang R, Zhu KM, Tie Y, Pei ST. Optimization NH3 sensing performance manifested by gas sensor based on Pr-SnS2/ZnS hierarchical nanoflowers. J Alloys Compd. 2019;807:151650.

    CAS  Google Scholar 

  22. Guo XJ, Wang KB, Xu YN. Tartaric acid enhanced CuFe2O4-catalyzed heterogeneous photo-Fenton-like degradation of methylene blue. Mater Sci Eng B-Adv. 2019;245:75.

    CAS  Google Scholar 

  23. Ge YC, Wang ZL, Yi MZ, Ran LP. Fabrication and magnetic transformation from paramagnetic to ferrimagnetic of ZnFe2PO4 hollow spheres. Trans Nonferrous Metal Soc. 2019;29(7):1503.

    CAS  Google Scholar 

  24. Liu YW, Zhang J, Gu LS, Wang LX, Zhang QT. Preparation and electromagnetic properties of nanosized Co0.5Zn0.5Fe2O4 ferrite. Rare Met. 2016. https://doi.org/10.1007/s12598-015-0670-7.

  25. Guo XJ, Xu YA, Wang KB, Zha F, Tang XH, Tian HF. Synthesis of magnetic CuFe2O4 self-assembled hollow nanospheres and its application for degrading methylene blue. Res Chem Intermediat. 2020;46(1):853.

    CAS  Google Scholar 

  26. Abu Haija M, Basina G, Banat F, Ayesh AI. Adsorption and gas sensing properties of CuFe2O4 nanoparticles. Mater Sci-Poland. 2019;37(2):289.

    CAS  Google Scholar 

  27. Yang XL, Zhang SF, Yu Q, Sun P, Liu FM, Lu HY, Yan X, Zhou X, Liang XS, Gao Y, Lu GY. Solvothermal synthesis of porous CuFe2O4 nanospheres for high performance acetone sensor. Sensor Actuat B-Chem. 2018;270:538.

    CAS  Google Scholar 

  28. Singh A, Singh A, Singh S, Tandon P. Fabrication of copper ferrite porous hierarchical nanostructures for an efficient liquefied petroleum gas sensor. Sensor Actuat B-Chem. 2017;244:806.

    CAS  Google Scholar 

  29. Abu Haija M, Abu-Hani AFS, Hamdan N, Stephen S, Ayesh AI. Characterization of H2S gas sensor based on CuFe2O4 nanoparticles. J Alloys Compd. 2017;690:461.

    CAS  Google Scholar 

  30. Sun ZP, Liu L, Ha DZ, Pan WY. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sensor Actuat B-Chem. 2007;125(1):144.

    CAS  Google Scholar 

  31. Rathore D, Mitra S, Kurchania R, Pandey RK. Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor. J Mater Sci-Mater El. 2018;29(3):1925.

    CAS  Google Scholar 

  32. Hu XB, Zhu ZG, Li ZH, Xie LL, Wu YH, Zheng LY. Heterostructure of CuO microspheres modified with CuFe2O4 nanoparticles for highly sensitive H2S gas sensor. Sensor Actuat B-Chem. 2018;264:139.

    CAS  Google Scholar 

  33. Othman I, Abu Haija M, Ismail I, Zain JH, Banat F. Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation. Mater Chem Phys. 2019;238:121931.

    CAS  Google Scholar 

  34. Hou HL, Xu GY, Tan SJ, Xiang SS. Effects of solvents on the synthesis and infrared radiation emissivity of CuFe2O4 spinels. J Alloys Compd. 2018;763:736.

    CAS  Google Scholar 

  35. Zhou JT, Tan RY, Yao ZJ, Lin HY, Li Z. Preparation of CoFe2O4 hollow spheres with carbon sphere templates and their wave absorption performance. Mater Chem Phys. 2020;244:122697.

    CAS  Google Scholar 

  36. Tang MY, Xia FL, Gao CJ, Qiu HX. Preparation of magnetically recyclable CuFe2O4/RGO for catalytic hydrolysis of sodium borohydride. Int J Hydrog Energy. 2016;41(30):13058.

    CAS  Google Scholar 

  37. Dong XB, Ren BX, Sun ZM, Li CQ, Zhang XW, Kong MH, Zheng SL, Dionysiou DD. Monodispersed CuFe2O4 nanoparticles anchored on natural kaolinite as highly efficient peroxymonosulfate catalyst for bisphenol A degradation. Appl Catal B-Environ. 2019;253:206.

    CAS  Google Scholar 

  38. Lv L, Wang YL, Cheng PF, Zhang B, Dang F, Xu LP. Ultrasonic spray pyrolysis synthesis of three-dimensional ZnFe2O4-based macroporous spheres for excellent sensitive acetone gas sensor. Sensor Actuat B-Chem. 2019;297:126755.

    CAS  Google Scholar 

  39. Yang C, Xu YS, Zheng LL, Zhao YQ, Zheng W, Liu XH, Zhang J. Hierarchical NiCo2O4 microspheres assembled by nanorods with p-type response for detection of triethylamine. Chin Chem Lett. 2020. https://doi.org/10.1016/j.cclet.2020.01.011.

    Article  Google Scholar 

  40. Ponmudi S, Sivakumar R, Sanjeeviraja C, Gopalakrishnan C, Jeyadheepan K. Facile fabrication of spinel structured n-type CuAl2O4 thin film with nano-grass like morphology by sputtering technique. Appl Surf Sci. 2019;483:601.

    CAS  Google Scholar 

  41. Wang LQ, Wang YZ, Tian HW, Qiao L, Zeng Y. Enhanced ammonia detection using wrinkled porous CoFe2O4 double-shelled spheres prepared by a thermally driven contraction process. Sensor Actuat B-Chem. 2020;314:128085.

    CAS  Google Scholar 

  42. Jain S, Patrike A, Badadhe SS, Bhardwaj M, Ogale S. Room-temperature ammonia gas sensing using mixed-valent CuCo2O4 nanoplatelets: performance enhancement through stoichiometry control. ACS Omega. 2018;3(2):1977.

    CAS  Google Scholar 

  43. Yan FF, Shen GW, Yang X, Qi TJ, Sun J, Li XH, Zhang MT. Low operating temperature and highly selective NH3 chemiresistive gas sensors based on Ag3PO4 semiconductor. Appl Surf Sci. 2019;479:1141.

    CAS  Google Scholar 

  44. Achary LSK, Kumar A, Barik B, Nayak PS, Tripathy N, Kar JP, Dash P. Reduced graphene oxide-CuFe2O4 nanocomposite: a highly sensitive room temperature NH3 gas sensor. Sensor Actuat B-Chem. 2018;272:100.

    CAS  Google Scholar 

  45. Wu KD, Luo YF, Li Y, Zhang C. Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors. Beilstein J Nanotechnol. 2019;10:2516.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51872254), the National Key Research and Development Program of China (No. 2017YFE0115900) and Yangzhou City-Yangzhou University Cooperation Foundation (No. YZU201801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, KD., Xu, JY., Debliquy, M. et al. Synthesis and NH3/TMA sensing properties of CuFe2O4 hollow microspheres at low working temperature. Rare Met. 40, 1768–1777 (2021). https://doi.org/10.1007/s12598-020-01609-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01609-9

Keywords

Navigation