Skip to main content
Log in

A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti3C2Tx, which is a novel two-dimensional (2D) material, has received enormous interest in the field of sensor technology due to its large surface area, excellent electrical conductivity, and abundant active surface sites. In recent years, several Ti3C2Tx-based gases and humidity sensors have been developed and reported. In this review, we focus on the latest applications of Ti3C2Tx-based nanomaterials in gas and humidity sensors. First, the synthesis of Ti3C2Tx from the dangerous fluorine-containing etching process to the safe fluorine-free preparation method was discussed, and the structures of the Ti3C2Tx controlled by different delamination methods were also outlined. Subsequently, the functionalization of pristine Ti3C2Tx and composite strategies for enhancing its gas and humidity sensing performance were reviewed. In addition, the gas and humidity sensing mechanisms of sensors based on Ti3C2Tx were also summarized. Finally, the challenges and opportunities for the use of Ti3C2Tx gas and humidity sensors were discussed to provide guidance on the promising potential of Ti3C2Tx in this field.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang YJ, Zhang JX, Jiang YD, Duan ZH, Liu BH, Zhao QN, Wang S, Yuan Z, Tai HL. Ultrasensitive flexible NH3 gas sensor based on polyaniline/SrGe4O9 nanocomposite with ppt-level detection ability at room temperature. Sens Actuators B Chem. 2020;319:128293.

    CAS  Google Scholar 

  2. Zhao QN, Duan ZH, Yuan Z, Li X, Wang S, Liu BH, Zhang YJ, Jiang YD, Tai HL. High performance ethylene sensor based on palladium-loaded tin oxide: application in fruit quality detection. Chin Chem Lett. 2020;31(8):2045.

    CAS  Google Scholar 

  3. Chen XY, Wang XZ, Liu FJ, Zhang GS, Song XJ, Tian J, Cui HZ. Fabrication of porous Zn2TiO4–ZnO microtubes and analysis of their acetone gas sensing properties. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01518-x.

    Article  Google Scholar 

  4. Tai HL, Duan ZH, Wang Y, Wang S, Jiang YD. Paper-based sensors for gas, humidity, and strain detections: a review. ACS Appl Mater Interfaces. 2020;12(28):31037.

    CAS  Google Scholar 

  5. Tu HL, Zhao HB, Wei F, Zhang QZ, Fan YY, Du J. Research progress in advanced sensing materials and related devices. Chin J Rare Met. 2019;43(1):1.

    Google Scholar 

  6. Zhang YJ, Zeng W. New insight into gas sensing performance of nanoneedle-assembled and nanosheet-assembled hierarchical NiO nanoflowers. Mater Lett. 2017;195:217.

    CAS  Google Scholar 

  7. Zhao QN, Yuan Z, Duan ZH, Jiang YD, Li X, Li ZM, Tai HL. An ingenious strategy for improving humidity sensing properties of multi-walled carbon nanotubes via poly-l-lysine modification. Sens Actuators B Chem. 2019;289:182.

    CAS  Google Scholar 

  8. Zhang YJ, Zeng W, Li YQ. New insight into gas sensing performance of nanorods assembled and nanosheets assembled hierarchical WO3·H2O structures. Mater Lett. 2018;235:49.

    Google Scholar 

  9. Xu YS, Zheng LL, Yang C, Zheng W, Liu XH, Zhang J. Oxygen vacancies enabled porous SnO2 thin films for highly sensitive detection of triethylamine at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20704.

    CAS  Google Scholar 

  10. Li J, Lu YJ, Ye Q, Cinke M, Han J, Meyyappan M. Carbon nanotube sensors for gas and organic vapor detection. Nano Lett. 2003;3(7):929.

    CAS  Google Scholar 

  11. Zhang YJ, Zeng W, Li YQ. Porous MoS2 microspheres decorated with Cu2O nanoparticles for ammonia sensing property. Mater Lett. 2019;241:223.

    CAS  Google Scholar 

  12. Zhang YJ, Zeng W, Li YQ. Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl Surf Sci. 2018;455:276.

    CAS  Google Scholar 

  13. Zhao QN, He ZZ, Jiang YD, Yuan Z, Wu HR, Su CL, Tai HL. Enhanced acetone-sensing properties of PEI thin film by GO-NH2 functional groups modification at room temperature. Front Mater. 2019;5:82.

    Google Scholar 

  14. Chen XW, Wang S, Su C, Han YT, Zou C, Zeng M, Hu NT, Su YJ, Zhou ZH, Yang Z. Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sens Actuators B Chem. 2020;305:127393.

    CAS  Google Scholar 

  15. Duan ZH, Zhao QN, Li CZ, Wang S, Jiang YD, Zhang YJ, Liu BH, Tai HL. Enhanced positive humidity sensitive behavior of p-reduced graphene oxide decorated with n-WS2 nanoparticles. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01524-z.

    Article  Google Scholar 

  16. Zhang YJ, Zeng W, Li YQ. The hydrothermal synthesis of 3D hierarchical porous MoS2 microspheres assembled by nanosheets with excellent gas sensing properties. J Alloys Compd. 2018;749:355.

    CAS  Google Scholar 

  17. Tai HL, Duan ZH, He ZZ, Li X, Xu JL, Liu BH, Jiang YD. Enhanced ammonia response of Ti3C2T nanosheets supported by TiO2 nanoparticles at room temperature. Sens Actuators B Chem. 2019;298:126874.

    CAS  Google Scholar 

  18. Fowler JD, Allen MJ, Tung VJ, Yang Y, Kaner RB, Weiller BH. Practical chemical sensors from chemically derived graphene. ACS Nano. 2009;3(2):301.

    CAS  Google Scholar 

  19. Gupta Chatterjee S, Chatterjee S, Ray AK, Chakraborty AK. Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens Actuators B Chem. 2015;221:1170.

    CAS  Google Scholar 

  20. Tyagi D, Wang HD, Huang WC, Hu LP, Tang YF, Guo ZN, Ouyang ZB, Zhang H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale. 2020;12(6):3535.

    CAS  Google Scholar 

  21. Fan YY, Tu HL, Pang Y, Wei F, Zhao HB, Yang Y, Ren TL. Au-decorated porous structure graphene with enhanced sensing performance for low-concentration NO2 detection. Rare Met. 2020;39(6):651.

    CAS  Google Scholar 

  22. Subhan F, Khan I, Hong J. Two-dimensional graphitic carbon nitride (g-C4N3) for superior selectivity of multiple toxic gases (CO, NO2, and NH3). Nanotechnology. 2020;31(14):145501.

    CAS  Google Scholar 

  23. Abbas AN, Liu BL, Chen L, Ma YQ, Cong S, Aroonyadet N, Köpf M, Nilges T, Zhou CW. Black phosphorus gas sensors. ACS Nano. 2015;9(5):5618.

    CAS  Google Scholar 

  24. Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4248.

    CAS  Google Scholar 

  25. Zhang YJ, Wang L, Zhang NN, Zhou ZJ. Adsorptive environmental applications of MXene nanomaterials: a review. RSC Adv. 2018;8(36):19895.

    CAS  Google Scholar 

  26. Zhu J, Ha E, ZhaoL G, Zhou Y, Huang D, Yue G, Hu LS, Sun N, Wang Y, Lee LYS, Xu C, Wong KY, Astric D, Zhao PX. Recent advance in MXenes: a promising 2D material for catalysis, sensor and chemical adsorption. Coordin Chem Rev. 2017;352:306.

    CAS  Google Scholar 

  27. Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A. 2019;7(18):10843.

    CAS  Google Scholar 

  28. Lee E, Kim DJ. Review—recent exploration of two-dimensional MXenes for gas sensing: from a theoretical to an experimental view. J Electrochem Soc. 2020;167(3):037515.

    CAS  Google Scholar 

  29. Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater. 2019;8(1):1801137.

    Google Scholar 

  30. Lee E, VahidMohammadi A, Yoon YS, Beidaghi M, Kim DJ. Two-dimensional vanadium carbide MXene for gas sensors with ultrahigh sensitivity toward nonpolar gases. ACS Sens. 2019;4(6):1603.

    CAS  Google Scholar 

  31. Liu F, Liu Y, Zhao X, Liu X, Fan LZ. Pursuit of a high-capacity and long-life Mg-storage cathode by tailoring sandwich-structured MXene@carbon nanosphere composites. J Mater Chem A. 2019;7(28):16712.

    CAS  Google Scholar 

  32. Halim J, Cook KM, Naguib M, Eklund P, Gogotsi Y, Rosen J, Barsoum MW. X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes). Appl Surf Sci. 2016;362:406.

    CAS  Google Scholar 

  33. Kim SJ, Koh HJ, Ren CE, Kwon O, Maleski K, Cho SY, Anasori B, Kim CK, Choi YK, Kim J, Gogotsi Y, Jung HT. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano. 2018;12(2):986.

    CAS  Google Scholar 

  34. Yang ZJ, Liu A, Wang CL, Liu FM, He JM, Li SQ, Wang J, You R, Yan X, Sun P, Duan Y, Lu GY. Improvement of gas and humidity sensing properties of organ-like MXene by alkaline treatment. ACS Sens. 2019;4(5):1261.

    CAS  Google Scholar 

  35. Lin H, Chen Y, Shi JL. Insights into 2D MXenes for versatile biomedical applications: current advances and challenges ahead. Adv Sci. 2018;5(10):1800518.

    Google Scholar 

  36. Wang HW, Naguib M, Page K, Wesolowski DJ, Gogotsi Y. Resolving the structure of Ti3C2Tx MXenes through multilevel structural modeling of the atomic pair distribution function. Chem Mater. 2015;28(1):349.

    Google Scholar 

  37. Sang XH, Xie Y, Lin MW, Alhabeb M, Van Aken KL, Gogotsi Y, Kent PRC, Xiao K, Unocic RR. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano. 2016;10(10):9193.

    CAS  Google Scholar 

  38. Hope MA, Forse AC, Griffith KJ, Lukatskaya MR, Ghidiu M, Gogotsi Y, Grey CP. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys Chem Chem Phys. 2016;18(7):5099.

    CAS  Google Scholar 

  39. Tang Q, Zhou Z. Graphene-analogous low-dimensional materials. Prog Mater Sci. 2013;58(8):1244.

    CAS  Google Scholar 

  40. Sun ZM, Music D, Ahuja R, Li S, Schneider JM. Bonding and classification of nanolayered ternary carbides. Phys Rev B. 2004;20(9):2516.

    Google Scholar 

  41. Wang XF, Kajiyama S, Iinuma H, Hosono E, Oro S, Moriguchi I, Okubo M, Yamada A. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun. 2015;6:6544.

    CAS  Google Scholar 

  42. Xiao Y, Hwang JY, Sun YK. Transition metal carbide-based materials: synthesis and applications in electrochemical energy storage. J Mater Chem A. 2016;4(27):10379.

    CAS  Google Scholar 

  43. Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional transition metal carbides. ACS Nano. 2012;6(2):1322.

    CAS  Google Scholar 

  44. Ghidiu M, Lukatskaya MR, Zhao MQ, Gogotsi Y, Barsoum MW. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature. 2014;516(7529):78.

    CAS  Google Scholar 

  45. Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y, Sinitskii A. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater. 2016;2(12):1600255.

    Google Scholar 

  46. Li TF, Yao LL, Liu QL, Gu JJ, Luo RC, Li JH, Yan XD, Wang WQ, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew Chem Int Ed Engl. 2018;57(21):6115.

    CAS  Google Scholar 

  47. Li GN, Tan L, Zhang YM, Wu BH, Li L. Highly efficiently delaminated single-layered MXene nanosheets with large lateral size. Langmuir. 2017;33(36):9000.

    CAS  Google Scholar 

  48. Xiong DB, Li XF, Bai ZM, Lu SG. Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small. 2018;14(17):1703419.

    Google Scholar 

  49. Mishra A, Srivastava P, Carreras A, Tanaka I, Mizuseki H, Lee KR, Singh AK. Atomistic origin of phase stability in oxygen-functionalized MXene: a comparative study. J Phys Chem C. 2017;121(34):18947.

    CAS  Google Scholar 

  50. Lipatov A, Lu H, Alhabeb M, Anasori B, Gruverman A, Gogotsi Y, Sinitskii A. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci Adv. 2018;4(6):eaat0491.

    Google Scholar 

  51. Mashtalir O, Naguib M, Mochalin VN, Dall'Agnese Y, Heon M, Barsoum MW, Gogotsi Y. Intercalation and delamination of layered carbides and carbonitrides. Nat Commun. 2013;4:1716.

    Google Scholar 

  52. Zang XB, Wang JL, Qin YJ, Wang T, He CP, Shao QG, Zhu HW, Cao N. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: from controlled preparation to composite structure construction. Nano Micro Lett. 2020;12(1):1.

    Google Scholar 

  53. Sugahara A, Ando Y, Kajiyama S, Yazawa K, Gotoh K, Otani M, Okubo M, Yamada A. Negative dielectric constant of water confined in nanosheets. Nat Commun. 2019;10(1):850.

    Google Scholar 

  54. Gao LF, Li C, Huang WH, Mei S, Lin H, Ou Q, Zhang Y, Guo J, Zhang F, Xu SX, Zhang H. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem Mater. 2020;32(5):1703.

    CAS  Google Scholar 

  55. Halim J, Lukatskaya MR, Cook KM, Lu J, Smith CR, Naslund LA, May SJ, Hultman L, Gogotsi Y, Eklund P, Barsoum MW. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem Mater. 2014;26(7):2374.

    CAS  Google Scholar 

  56. Wang BX, Zhou AG, Liu FF, Cao JL, Wang LB, Hu QK. Carbon dioxide adsorption of two-dimensional carbid MXenes. J Adv Ceram. 2018;7(3):237.

    CAS  Google Scholar 

  57. Wang X, Garnero C, Rochard G, Magne D, Morisset S, Hurand S, Chartier P, Rousseau J, Cabioc'h T, Coutanceau C, Mauchamp V, Célérier S. A new etching environment (FeF3/HCl) for the synthesis of two-dimensional titanium carbide MXenes: a route towards selective reactivity vs. water. J Mater Chem A. 2017;5(41):22012.

    CAS  Google Scholar 

  58. Lukatskaya MR, Mashtalir O, Ren CE, Dall'Agnese Y, Rozier P, Taberna PL, Naguib M, Simon P, Barsoum MW, Gogotsi Y. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science. 2013;341(6153):1502.

    CAS  Google Scholar 

  59. Wang BL, Zhang H, Wang B, Shen CJ, Zhang CX, Hu QK, Zhou AG, Liu BZ. Synthesis and electrochemical performance of Ti3C2Tx with hydrothermal process. Electron Mater Lett. 2016;12(5):702.

    CAS  Google Scholar 

  60. Feng AH, Yu Y, Wang Y, Jiang F, Yu Y, Mi L, Song LX. Two-dimensional MXene Ti3C2 produced by exfoliation of Ti3AlC2. Mater Des. 2017;114:161.

    CAS  Google Scholar 

  61. Yang S, Zhang PP, Wang FX, Ricciardulli AG, Lohe MR, Blom PWM, Feng XL. Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system. Angew Chem Int Ed Engl. 2018;57(47):15491.

    CAS  Google Scholar 

  62. Yuan W, Yang K, Peng H, Li F, Yin F. A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. J Mater Chem A. 2018;6(37):18116.

    CAS  Google Scholar 

  63. An H, Habib T, Shah S, Gao H, Patel A, Echols I, Zhao XF, Radovic M, Green MJ, Lutkenhaus JL. Water sorption in MXene/polyelectrolyte multilayers for ultrafast humidity sensing. ACS Appl Nano Mater. 2019;2(2):948.

    CAS  Google Scholar 

  64. Kim SJ, Choi J, Maleski K, Hantanasirisakul K, Jung HT, Gogotsi Y, Ahn CW. Interfacial assembly of ultrathin functional MXene films. ACS Appl Mater Interfaces. 2019;11(35):32320.

    CAS  Google Scholar 

  65. Feng WL, Luo H, Wang Y, Zeng SF, Tan YQ, Zhang HB, Peng SM. Ultrasonic assisted etching and delaminating of Ti3C2 Mxene. Ceram Int. 2018;44(6):7084.

    CAS  Google Scholar 

  66. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater. 2017;29(18):7633.

    CAS  Google Scholar 

  67. Qian A, Seo JY, Shi H, Lee JY, Chung CH. Diverse surface functional groups and electrochemical behavior in dimethyl sulfoxide-delaminated Ti3C2Tx MXene. Chemsuschem. 2018;11(21):3719.

    CAS  Google Scholar 

  68. Wang HB, Zhang JF, Wu YP, Huang HJ, Jiang QG. Achieving high-rate capacitance of multi-layer titanium carbide (MXene) by liquid-phase exfoliation through Li-intercalation. Electrochem Commun. 2017;81:48.

    CAS  Google Scholar 

  69. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science. 2016;353(6304):1137.

    CAS  Google Scholar 

  70. Xuan JN, Wang ZQ, Chen YY, Liang DJ, Cheng L, Yang XJ, Liu Z, Ma RZ, Sasaki T, Geng FX. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew Chem Int Ed. 2016;55(47):1456.

    Google Scholar 

  71. Zhang CJ, Pinilla S, McEvoy N, Cullen CP, Anasori B, Long E, Park SH, Seral-Ascaso A, Shmeliov A, Krishnan D, Morant C, Liu XH, Duesberg GS, Gogotsi Y, Nicolosi V. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem Mater. 2017;29(11):4848.

    CAS  Google Scholar 

  72. Lee E, VahidMohammadi A, Prorok BC, Yoon YS, Beidaghi M, Kim DJ. Room temperature gas sensing of two-dimensional titanium carbide (MXene). ACS Appl Mater Interfaces. 2017;9(42):37184.

    CAS  Google Scholar 

  73. Wu M, He M, Hu QK, Wu QH, Sun G, Xie LL, Zhang ZY, Zhu ZG, Zhou AG. Ti3C2 MXene-based sensors with high selectivity for NH3 detection at room temperature. ACS Sens. 2019;4(10):2763.

    CAS  Google Scholar 

  74. Khakbaz P, Moshayedi M, Hajian S, Soleimani M, Narakathu BB, Bazuin BJ, Pourfath M, Atashbar MZ. Titanium carbide MXene as NH3 sensor: realistic first-principles study. J Phys Chem C. 2019;123(49):29794.

    CAS  Google Scholar 

  75. Shuck CE, Han M, Maleski K, Hantanasirisakul K, Kim SJ, Choi J, Reil WEB, Gogotsi Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl Nano Mater. 2019;2(6):3368.

    CAS  Google Scholar 

  76. Huang S, Mochalin VN. Understanding chemistry of two-dimensional transition metal carbides and carbonitrides (MXenes) with gas analysis. ACS Nano. 2020;14(8):10251.

    CAS  Google Scholar 

  77. Chae Y, Kim SJ, Cho SY, Choi J, Maleski K, Lee BJ, Jung HT, Gogotsi Y, Lee Y, Ahn CW. An investigation into the factors governing the oxidation of two-dimensional Ti3C2 MXene. Nanoscale. 2019;11(17):8387.

    CAS  Google Scholar 

  78. Dillon AD, Ghidiu MJ, Krick AL, Griggs J, May SJ, Gogotsi Y, Barsoum MW, Fafarman AT. Highly conductive optical quality solution-processed films of 2D titanium carbide. Adv Funct Mater. 2016;26(23):4162.

    CAS  Google Scholar 

  79. Muckley ES, Naguib M, Ivanov IN. Multi-modal, ultrasensitive, wide-range humidity sensing with Ti3C2 film. Nanoscale. 2018;10(46):21689.

    CAS  Google Scholar 

  80. Pazniak H, Plugin IA, Loes MJ, Inerbaev TM, Burmistrov IN, Gorshenkov M, Polcak J, Varezhnikov AS, Sommer M, Kuznetsov DV, Bruns M, Fedorov FS, Vorobeva NS, Sinitskii A, Sysoev VV. Partially oxidized Ti3C2Tx MXenes for fast and selective detection of organic vapors at part-per-million concentrations. ACS Appl Nano Mater. 2020;3(4):3195.

    CAS  Google Scholar 

  81. Sun Q, Wang J, Wang X, Dai J, Wang XS, Fan HC, Wang ZW, Li H, Huang X, Huang W. Treatment-dependent surface chemistry and gas sensing behavior of the thinnest member of titanium carbide MXenes. Nanoscale. 2020;12(32):16987.

    CAS  Google Scholar 

  82. Shuvo SN, Gomez AMU, Mishra A, Chen WY, Dongare AM, Stanciu LA. Sulfur-doped titanium carbide Mxenes for room temperature gas sensing. ACS Sens. 2020. https://doi.org/10.1021/acssensors.0c01287.

    Article  Google Scholar 

  83. Koh HJ, Kim SJ, Maleski K, Cho SY, Kim YJ, Ahn CW, Gogotsi Y, Jung HT. Enhanced selectivity of MXene gas sensors through metal ion intercalation: in situ X-ray diffraction study. ACS Sens. 2019;4(5):1365.

    CAS  Google Scholar 

  84. Muckley ES, Naguib M, Wang HW, Vlcek L, Osti NC, Sacci RL, Sang XH, Unocic RR, Xie Y, Tyagi M, Mamontov E, Page KL, Kent PRC, Nanda J, Ivanov IN. Multimodality of structural, electrical, and gravimetric responses of intercalated mxenes to water. ACS Nano. 2017;11(11):11118.

    CAS  Google Scholar 

  85. Shpigel N, Levi MD, Sigalov S, Mathis TS, Gogotsi Y, Aurbach D. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J Am Chem Soc. 2018;140(28):8910.

    CAS  Google Scholar 

  86. Zhu ZY, Liu CC, Jibng FX, Liu J, Ma XM, Liu P, Xu JK, Wang L, Huang R. Flexible and lightweight Ti3C2TxMXene@ Pd colloidal nanoclusters paper film as novel H2 sensor. J Hazard Mater. 2020;399:123054.

    CAS  Google Scholar 

  87. Sun SB, Wang MW, Chang XT, Jiang YC, Zhang DZ, Wang DS, Zhang YL, Lei YH. W18O49/Ti3C2Tx Mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens Actuators B Chem. 2020;304:127274.

    CAS  Google Scholar 

  88. Hermawan A, Zhang B, Taufik A, Asakura Y, Hasegawa T, Zhu J, Shi P, Shu Y. CuO nanoparticles/ Ti3C2Tx MXene hybrid nanocomposites for detection of toluene gas. ACS Appl Nano Mater. 2020;3(5):4755.

    CAS  Google Scholar 

  89. Choi J, Kim YJ, Cho SY, Park K, Kang HS, Kim SJ. In situ formation of multiple schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv Funct Mater. 2020;2020:2003998. https://doi.org/10.1002/adfm.202003998.

    Article  CAS  Google Scholar 

  90. Li N, Jiang Y, Zhou CH, Xiao Y, Meng B, Wang Z, Hunag DZ, Xing CY, Peng ZH. High-performance humidity sensor based on urchin-like composite of Ti3C2 MXene-derived TiO2 nanowires. ACS Appl Mater Interfaces. 2019;11(41):38116.

    CAS  Google Scholar 

  91. Chen WY, Jiang X, Lai SN, Peroulis D, Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat Commun. 2020;11(1):1302.

    CAS  Google Scholar 

  92. Lee SH, Eom W, Shin H, Ambade RB, Bang JH, Kim HW, Han TH. Room-temperature, highly durable Ti3C2Tx MXene/graphene hybrid fibers for NH3 gas sensing. ACS Appl Mater Interfaces. 2020;12(9):10434.

    CAS  Google Scholar 

  93. Wang Y, Zhou Y, Wang Y. Humidity activated ionic-conduction formaldehyde sensing of reduced graphene oxide decorated nitrogen-doped MXene/titanium dioxide composite film. Sens Actuators B Chem. 2020;323:128695.

    CAS  Google Scholar 

  94. Zhao L, Wang K, Wei W, Wang L, Han W. High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat. 2019;1(3):407.

    CAS  Google Scholar 

  95. Li X, Xu JL, Jiang YD, He ZZ, Liu BH, Xie HK, Li H, Li ZM, Wang Y, Tai HL. Toward agricultural ammonia volatilization monitoring: a flexible polyaniline/Ti3C2Tx hybrid sensitive films based gas sensor. Sens Actuators B Chem. 2020;316:128144.

    CAS  Google Scholar 

  96. Wang X, Sun K, Li K, Li X, Gogotsi Y. Ti3C2Tx /PEDOT: PSS hybrid materials for room-temperature methanol sensor. Chin Chem Lett. 2020;31(4):1018.

    CAS  Google Scholar 

  97. Zhao LJ, Zheng YQ, Wang K, Lv C, Wei W, Wang LL, Han W. Highly stable cross-linked cationic polyacrylamide/Ti3C2Tx MXene nanocomposites for flexible ammonia-recognition devices. Adv Mater Technol. 2020;5(7):2000248.

    CAS  Google Scholar 

  98. Liu LX, Chen W, Zhang HB, Wang QW, Guan F, Yu ZZ. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity. Adv Funct Mater. 2019;29(44):1905197.

    CAS  Google Scholar 

  99. Pomerantseva E, Gogotsi Y. Two-dimensional heterostructures for energy storage. Nat Energy. 2017;2(7):17089.

    CAS  Google Scholar 

  100. Wang CD, Chen SG, Song L. Tuning 2D MXenes by surface controlling and interlayer engineering: methods, properties, and synchrotron radiation characterizations. Adv Funct Mater. 2020. https://doi.org/10.1002/adfm.202000869.

    Article  Google Scholar 

  101. Zhan XX, Si C, Zhou J, Sun ZM. MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 2020;5(2):235.

    CAS  Google Scholar 

  102. Liu YH, Zhang JK, Zhang X, Li YF, Wang JT. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Appl Mater Interfaces. 2016;8(31):20352.

    CAS  Google Scholar 

  103. Michael J, Zhang QF, Wang DL. Titanium carbide MXene: synthesis, electrical and optical properties and their applications in sensors and energy storage devices. Nanomater Nanotechnol. 2019. https://doi.org/10.1177/1847980418824470.

    Article  Google Scholar 

  104. Wu W, Xu J, Tang XW, Xie PW, Liu XH, Xu JS, Zhou H, Zhang D, Fan TX. Two-dimensional nanosheets by rapid and efficient microwave exfoliation of layered materials. Chem Mater. 2018;30(17):5932.

    CAS  Google Scholar 

  105. Han F, Luo SJ, Xie LY, Zhu JJ, Wei W, Chen X, Liu FW, Chen W, Zhao JL, Dong L, Yu K, Zeng XR, Rao F, Wang L, Huang Y. Boosting the yield of MXene 2D sheets via a facile hydrothermal-assisted intercalation. ACS Appl Mater Interfaces. 2019;11(8):8443.

    CAS  Google Scholar 

  106. Mashtalir O, Cook KM, Mochalin VN, Crowe M, Barsoum MW, Gogotsi Y. Dye adsorption and decomposition on two-dimensional titanium carbide in aqueous media. J Mater Chem A. 2014;2(35):14334.

    CAS  Google Scholar 

  107. Zhao X, Vashisth A, Prehn E, Sun W, Shah SA, Habib T, Chen YX, Tan ZY, Lutkenhaus JL, Radovic M, Green MJ. Antioxidants unlock shelf-stable Ti3C2Tx (MXene) nanosheet dispersions. Matter. 2019;1(2):513.

    Google Scholar 

  108. Wang ZG, Yu K, Feng Y, Qi RJ, Ren J, Zhu ZQ. Stabilizing Ti3C2Tx-MXenes with TiOF2 nanospheres intercalation to improve hydrogen evolution reaction and humidity-sensing performance. Appl Surf Sci. 2019;496:143729.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U19A2070), the National Science Funds for Excellent Young Scholars of China (No. 61822106) and the National Science Funds for Creative Research Groups of China (No. 61421002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Tai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, QN., Zhang, YJ., Duan, ZH. et al. A review on Ti3C2Tx-based nanomaterials: synthesis and applications in gas and humidity sensors. Rare Met. 40, 1459–1476 (2021). https://doi.org/10.1007/s12598-020-01602-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01602-2

Keywords

Navigation