Skip to main content

Advertisement

Log in

Stability of passive film and antibacterial durability of Cu-bearing L605 alloy in simulated physiological solutions

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, the stability of passive film for long-time immersed Cu-bearing L605 (L605-Cu) alloy in the phosphate buffer solution (PBS) was studied by potentiodynamic polarization and electrochemical impedance spectroscopy. The results showed that the impedance of passive film for L605-Cu alloy experienced an initial increase and subsequent stabilization with the increase in the immersion time. In addition, the plate count method was employed to assess the antibacterial durability of L605-Cu alloy against Escherichia coli after long-time immersion. The results indicated that the antibacterial rate of L605-Cu alloy presented a declining tendency with the immersion time prolonging. X-ray photoelectron spectroscopy (XPS) was used to analyze the change of the chemical composition in the passive film on L605-Cu alloy immersed in the PBS for different time. The results showed that Cu content and its compounds in the passive film gradually increased with the immersion time prolonging, hinting declined activity of Cu ions penetrating into the passive film, which resulted in a decrease in the antibacterial performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vidal CV, Muñoz AI. Effect of thermal treatment and applied potential on the electrochemical behavior of CoCrMo biomedical alloy. Electrochim Acta. 2009;54(6):1798.

    CAS  Google Scholar 

  2. Igual Muñoz A, CasabánJulián L. Influence of electrochemical potential on the tribocorrosion behaviour of high carbon CoCrMo biomedical alloy in simulated body fluids by electrochemical impedance spectroscopy. Electrochim Acta. 2010;55(19):5428.

    Google Scholar 

  3. Hodgson E, Kurz S, Virtanen S, Fervel V, Olsson A, Mischler S. Passive and transpassive behaviour of CoCrMo in simulated biological solutions. Electrochim Acta. 2004;49(13):2167.

    CAS  Google Scholar 

  4. Li ZD, Zhang WW, Li GT, Li SS, Ding HS, Zhang T, Song YJ. Magnetic field annealing of FeCo-based amorphous alloys to enhance thermal stability and Curie temperature. Rare Met. 2018;38(4):552.

    Google Scholar 

  5. Paloma AA, Hanssen AD, Osmon DR. High rate of aminoglycoside resistance among staphylococci causing prosthetic joint infection. Clin Orthop Relat Res. 2005;439(439):43.

    Google Scholar 

  6. Liu J, Li FB, Liu C, Wang HY, Ren BH, Yang K, Zhang EL. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng C. 2014;35(2):392.

    Google Scholar 

  7. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8(2):904.

    CAS  Google Scholar 

  8. Tan L, Li J, Liu XM, Cui ZD, Yang XJ, Zhu SL, Li ZY, Yuan XB, Zheng YF, Yeung KWK, Pan HB, Wang XB, Wu SL. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light. Adv Mater. 2018;30(31):1801808.

    Google Scholar 

  9. Jin G, Qin H, Cao H, Qian S, Zhao Y, Peng X, Zhang X, Liu X, Chu PK. Synergistic effects of dual Zn/Ag ion implantation in osteogenic activity and antibacterial ability of titanium. Biomaterials. 2014;35(27):7699.

    CAS  Google Scholar 

  10. Hu X, Neoh KG, Zhang J, Kang ET. Bacterial and osteoblast behavior on titanium, cobalt-chromium alloy and stainless steel treated with alkali and heat: a comparative study for potential orthopedic applications. J Colloid Interface Sci. 2014;417(3):410.

    CAS  Google Scholar 

  11. Xie GC, Wang LG, Wang JW. A high-throughput experimental characterization of composition elasticity relationship of Cu-Ni-Ti alloy. Chin J Rare Met. 2019;43(3):233.

    Google Scholar 

  12. Zhang E, Liu C. A new antibacterial Co-Cr-Mo-Cu alloy: preparation, biocorrosion, mechanical and antibacterial property. Mater Sci Eng C. 2016;69(12):134.

    CAS  Google Scholar 

  13. Jia M, Zhang YH, Zhao SY, Liu YL. Antibacterial ability and cytocompatibility of Cu-incorporated Ni-T-O nanopores on NiTi alloy. Rare Met. 2019;38(6):552.

    Google Scholar 

  14. Li M, Nan L, Xu D, Ren G, Yang K. Antibacterial performance of a Cu-bearing stainless steel against microorganisms in tap water. J Mater Sci Technol. 2015;31(3):243.

    Google Scholar 

  15. Cai DG, Bao MM, Wang XY, Yang L, Zhang EL. Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility. Rare Met. 2019;38(6):503.

    CAS  Google Scholar 

  16. Wang S, Yang C, Ren L, Shen M, Yang K. Study on antibacterial performance of Cu-bearing cobalt-based alloy. Mater Lett. 2014;129(8):88.

    CAS  Google Scholar 

  17. Huang YS, Huang HH. Effects of clinical dental implant abutment materials and their surface characteristics on initial bacterial adhesion. Rare Met. 2019;38(6):512.

    CAS  Google Scholar 

  18. Zhang EL, Fu S, Wang RX, Li HX, Liu Y. Role of Cu element in biomedical metal alloy design. Rare Met. 2019;38(6):476.

    CAS  Google Scholar 

  19. Ziemniak SE, Hanson M. Zinc treatment effects on corrosion behavior of Alloy 600 in high temperature, hydrogenated water. Corros Sci. 2006;48(10):498.

    CAS  Google Scholar 

  20. Sun H, Wu X, Han EH. Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution. Corros Sci. 2009;51(12):2840.

    CAS  Google Scholar 

  21. Mottu N, Vayer M, Dudognon J, Erre R. Structure and composition effects on pitting corrosion resistance of austenitic stainless steel after molybdenum ion implantation. Surf Coat Technol. 2005;200(7):2131.

    CAS  Google Scholar 

  22. Jinlong Z, Zhaofeng Z, Da S, Chunguang Y. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Mater Sci Eng C. 2019;100(7):396.

    Google Scholar 

  23. Suzuki S, Imai S, Kourai H. Background and evidence leading to the establishment of the JIS standard for antimicrobial products. Biocontrol Sci. 2006;11(3):135.

    CAS  Google Scholar 

  24. Yan S, Liang T, Chen J, Li T, Liu X. A novel Cu-Ni added medium Mn steel: precipitation of Cu-rich particles and austenite reversed transformation occurring simultaneously during ART annealing. Mater Sci Eng A. 2019;746(2):73.

    CAS  Google Scholar 

  25. Zhao JL, Xu DK, Shahzad MB, Kang Q, Sun Y, Sun ZQ, Zhang SY, Ren L, Yang CG, Yang K. Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel. Appl Surf Sci. 2016;386(11):371.

    CAS  Google Scholar 

  26. Rondelli G, Torricelli P, Fini M, Giardino R. In vitro corrosion study by EIS of a nickel-free stainless steel for orthopaedic applications. Biomaterials. 2005;26(7):739.

    CAS  Google Scholar 

  27. Parham RA, Kaustinen HM. Differential staining of tannin in sections of epoxy-embedded plant cells. Stain Technol. 1976;51(4):237.

    CAS  Google Scholar 

  28. Hermas AA, Morad MS. A comparative study on the corrosion behavior of 304 austenitic stainless steel in sulfumic and sulfuric acid solutions. Corros Sci. 2008;50(9):2710.

    CAS  Google Scholar 

  29. Zhao J, Yang C, Zhang D, Zhao Y, Khan MS, Xu D, Xi T, Li X, Yang K. Investigation on mechanical, corrosion resistance and antibacterial properties of Cu-bearing 2205 duplex stainless steel by solution treatment. RSC Adv. 2016;6(11):112738.

    CAS  Google Scholar 

  30. Oje AM, Ogwu AA, Rahman SU, Ojea AI, Tsendzughu N. Effect of temperature variation on the corrosion behaviour and semiconducting properties of the passive film formed on chromium oxide coatings exposed to saline solution. Corros Sci. 2019;154(7):28.

    CAS  Google Scholar 

  31. Zhu L, Elguindi J, Rensing C, Ravishankar S. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica. Food Microbiol. 2012;30(1):303.

    CAS  Google Scholar 

  32. Shuai C, Liu L, Zhao M, Feng P, Yang Y, Guo W, Gao C, Yuan F. Microstructure, biodegradation, antibacterial and mechanical properties of ZK60-Cu alloys prepared by selective laser melting technique. J Mater Sci Technol. 2018;34(10):234.

    Google Scholar 

  33. Peng C, Liu Y, Liu H, Zhang S, Bai C, Wan Y, Ren L, Yang K. Optimization of annealing treatment and comprehensive properties of Cu-containing Ti6Al4V-xCu alloys. J Mater Sci Technol. 2019;35(10):2121.

    Google Scholar 

  34. Moniri JS, Alipour S, Akbarpour MR. Microstructural characterization and enhanced hardness, wear and antibacterial properties of a powder metallurgy SiC/Ti-Cu nanocomposite as a potential material for biomedical applications. Ceram Int. 2019;45(8):10603.

    Google Scholar 

  35. Ma Z, Yao M, Liu R, Yang K, Ren L, Zhang Y, Liao Z, Liu W, Qi M. Study on antibacterial activity and cytocompatibility of Ti-6Al-4V-5Cu alloy. Mater Technol. 2014;30(11):80.

    Google Scholar 

  36. Lizama-Tzec FI, Macías JD, Estrella-Gutiérrez MA, Cahue-López AC, Alvarado-Gil JJ, Oskam G. Electrodeposition and characterization of nanostructured black nickel selective absorber coatings for solar–thermal energy conversion. J Mater Sci Mater Electron. 2015;26(8):5553.

    CAS  Google Scholar 

  37. Oguzie EE, Li J, Liu Y, Chen D, Li Y, Yang K, Wang F. The effect of Cu addition on the electrochemical corrosion and passivation behavior of stainless steels. Electrochim Acta. 2010;55(17):5028.

    CAS  Google Scholar 

  38. Asami K, Hashimoto K, Shimodaira S. XPS determination of compositions of alloy surfaces and surface oxides on mechanically polished iron-chromium alloys. Corros Sci. 1977;17(9):713.

    CAS  Google Scholar 

  39. Dai C, Luo H, Li J, Du C, Liu Z, Yao J. X-ray photoelectron spectroscopy and electrochemical investigation of the passive behavior of high-entropy FeCoCrNiMox alloys in sulfuric acid. Appl Surf Sci. 2019;499(1):143903.

    Google Scholar 

  40. Matković T, Matković P, Malina J. Effects of Ni and Mo on the microstructure and some other properties of Co-Cr dental alloys. J Alloy Compd. 2004;366(1):293.

    Google Scholar 

  41. Li Y, Fan X, Tang N, Bian H, Hou Y, Koizumi Y, Chiba A. Effects of partially substituting cobalt for nickel on the corrosion resistance of a Ni-16Cr-15Mo alloy to aqueous hydrofluoric acid. Corros Sci. 2014;78(1):101.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51771199, 51631009 and 51501188) and the National Key Research and Development Program (No. 2016YFB0300205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Guang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, PF., Zhao, JL., Xi, T. et al. Stability of passive film and antibacterial durability of Cu-bearing L605 alloy in simulated physiological solutions. Rare Met. 40, 1126–1133 (2021). https://doi.org/10.1007/s12598-020-01599-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01599-8

Keywords

Navigation