Skip to main content

Advertisement

Log in

Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Two new different metal–organic frameworks (MOFs) [Ba(L1)(H2O)2]n·nH2O (MOF 1) and [Ba(L2)(H2O)2]n·0.5nDMF·0.5nH2O (MOF 2) were yielded by the assembly of oxygen-friendly Ba(II) ions and two similar linkers, namely 2-(imidazol-1-yl)terephthalic acid (H2L1) and 2-(1H-1,2,4-triazol-1-yl) terephthalic acid (H2L2). Single-crystal X-ray diffractions (XRD) indicate that MOF 1 is a new three-dimensional (3D) stacking dense network formed by the one-dimensional (1D) rod-shaped chains and L1 linkers, whereas MOF 2 presents a 3D nanotube porous framework with cylindrical tunnels based on the 1D loop chains as the secondary building units (SBUs) by replacing the imidazole group in H2L1 with the triazole group in H2L2. As a result, MOF 2 has a higher density of active sites and Lewis acid sites in the porous surface of nanotube than MOF 1. Thereby, the CO2 capture and separation capacity of MOF 2 is great higher than that of CH4 at 298 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu QL, Xu Q. Metal-organic framework composites. Chem Soc Rev. 2014;43(16):5468.

    Article  CAS  Google Scholar 

  2. Oien-Odegaard S, Shearer GC, Wragg DS, Lillerud KP. Pitfalls in metal-organic framework crystallography: towards more accurate crystal structures. Chem Soc Rev. 2017;46(16):4867.

    Article  CAS  Google Scholar 

  3. Zheng S, Li Q, Xue H, Pang H, Xu Q. A highly alkaline-stable metal oxide@metal–organic framework composite for high-performance electrochemical energy storage. Natl Sci Rev. 2020;7(2):305.

    Article  CAS  Google Scholar 

  4. Bai Y, Dou Y, Xie LH, Rutledge W, Li JR, Zhou HC. Zr-based metal-organic frameworks: design, synthesis, structure, and applications. Chem Soc Rev. 2016;45(8):2327.

    Article  CAS  Google Scholar 

  5. Wang H, Chen L, Pang H, Kaskel S, Xu Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem Soc Rev. 2020;49(5):1414.

    Article  CAS  Google Scholar 

  6. Cheng WZ, Liang JL, Yin HB, Wang YJ, Yan WF, Zhang JN. Bifunctional iron-phtalocyanine metal-organic framework catalyst for ORR, OER and rechargeable zinc-air battery. Rare Met. 2020;39(7):815.

    Article  CAS  Google Scholar 

  7. Zhao Y, Wang L, Fan NN, Han ML, Yang GP, Ma LF. Porous Zn(II)-based metal–organic frameworks decorated with carboxylate groups exhibiting high gas Adsorption and separation of organic dyes. Cryst Growth Des. 2018;18(11):7114.

    Article  CAS  Google Scholar 

  8. Makal TA, Li JR, Lu W, Zhou HC. Methane storage in advanced porous materials. Chem Soc Rev. 2012;41(23):7761.

    Article  CAS  Google Scholar 

  9. Du M, Chen M, Yang XG, Wen J, Wang X, Fang SM, Liu CS. A channel-type mesoporous In(III)–carboxylate coordination framework with high physicochemical stability for use as an electrode material in supercapacitors. J Mater Chem A. 2014;2(25):9828.

    Article  CAS  Google Scholar 

  10. Pang J, Liu Y, Li J, Yang X. Solvothermal synthesis of nano-CeO2 aggregates and its application as a high-efficient arsenic adsorbent. Rare Met. 2019;38(1):73.

    Article  CAS  Google Scholar 

  11. Valvekens P, Jonckheere D, Baerdemaeker TD, Kubarev AV, Vandichel M, Hemelsoet K, Waroquier M, Speybroeck VV, Smolders E, Depla D, Roeffaersa MBJ, Vos DD. Base catalytic activity of alkaline earth MOFs: a (micro)spectroscopic study of active site formation by the controlled transformation of structural anions. Chem Sci. 2014;5(11):4517.

    Article  CAS  Google Scholar 

  12. Kim MK, Ok KM. New alkali earth metal–organic frameworks with a very high thermal stability: synthesis, crystal structure, and characterization of AE[NC5H3(CO2)2] (AE = Ba or Sr). Cryst Eng Commun. 2011;13(14):4599.

    Article  CAS  Google Scholar 

  13. Kundu T, Sahoo SC, Banerjee R. Alkali earth metal (Ca, Sr, Ba) based thermostable metal-organic frameworks (MOFs) for proton conduction. Chem Commun. 2012;48(41):4998.

    Article  CAS  Google Scholar 

  14. Li XY, Li YZ, Yang Y, Hou L, Wang YY, Zhu Z. Efficient light hydrocarbon separation and CO2 capture and conversion in a stable MOF with oxalamide-decorated polar tubes. Chem Commun. 2017;53(96):12970.

    Article  CAS  Google Scholar 

  15. Hwang J, Yan R, Oschatz M, Schmidt BVKJ. Solvent mediated morphology control of zinc MOFs as carbon templates for application in supercapacitors. J Mater Chem A. 2018;6(46):23521.

    Article  CAS  Google Scholar 

  16. Chen XH, Wei Q, Hong JD, Xu R, Zhou TH. Bifunctional metal-organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019;38(5):413.

    Article  CAS  Google Scholar 

  17. Wu YL, Qian J, Yang GP, Yang F, Liang YT, Zhang WY, Wang YY. High CO2 uptake capacity and selectivity in a fascinating nanotube-based metal-organic framework. Inorg Chem. 2017;56(2):908.

    Article  CAS  Google Scholar 

  18. Song X, Zhang M, Duan J, Bai J. Constructing and finely tuning the CO2 traps of stable and various-pore-containing MOFs towards highly selective CO2 capture. Chem Commun. 2019;55(24):3477.

    Article  CAS  Google Scholar 

  19. Wang D, Zhang J, Li G, Yuan J, Li J, Huo Q, Liu Y. Mesoporous hexanuclear copper cluster-based metal-organic framework with highly selective adsorption of gas and organic dye molecules. ACS Appl Mater Interfaces. 2018;10(37):31233.

    Article  CAS  Google Scholar 

  20. Zhou Z, He C, Xiu J, Yang L, Duan C. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides. J Am Chem Soc. 2015;137(48):15066.

    Article  CAS  Google Scholar 

  21. Yuan Y, Li J, Sun X, Li G, Liu Y, Verma G, Ma S. Indium–organic frameworks based on dual secondary building units featuring halogen-decorated channels for highly effective CO2 fixation. Chem Mater. 2019;31(3):1084.

    Article  CAS  Google Scholar 

  22. Li XY, Li ZJ, Li Y, Hou L, Zhu Z, Wang YY. Direct evidence: enhanced C2H6 and C2H4 adsorption and separation performances by introducing open nitrogen-donor sites in a MOF. Inorg Chem. 2018;57(19):12417.

    Article  CAS  Google Scholar 

  23. Bai D, Gao X, He M, Wang Y, He Y. Three isoreticular MOFs derived from nitrogen-functionalized diisophthalate ligands: exploring the positional effect of nitrogen functional sites on the structural stabilities and selective C2H2/CH4 and CO2/CH4 adsorption properties. Inorg Chem Front. 2018;5(6):1423.

    Article  CAS  Google Scholar 

  24. Hu TL, Wang H, Li B, Krishna R, Wu H, Zhou W, Zhao Y, Han Y, Wang X, Zhu W, Yao Z, Xiang S, Chen B. Microporous metal-organic framework with dual functionalities for highly efficient removal of acetylene from ethylene/acetylene mixtures. Nat Commun. 2015;6:7328.

    Article  CAS  Google Scholar 

  25. Hu Y, Xiang S, Zhang W, Zhang Z, Wang L, Bai J, Chen B. A new MOF-505 analog exhibiting high acetylene storage. Chem Commun. 2009;45:7551.

    Article  Google Scholar 

  26. He Y, Krishna R, Chen B. Metal–organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons. Energy Environ Sci. 2012;5(10):9107.

    Article  CAS  Google Scholar 

  27. He Y, Zhang Z, Xiang S, Fronczek FR, Krishna R, Chen B. A robust doubly interpenetrated metal-organic framework constructed from a novel aromatic tricarboxylate for highly selective separation of small hydrocarbons. Chem Commun. 2012;48(52):6493.

    Article  CAS  Google Scholar 

  28. Xu MM, Kong XJ, He T, Wu XQ, Xie LH, Li JR. Reaction duration-dependent formation of two Cu(II)-MOFs with selective adsorption properties of C3H4 over C3H6. Dalton Trans. 2019;48(25):9225.

    Article  CAS  Google Scholar 

  29. Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applicationsas a platform for clean as a platform for clean energy applications. Energy Chem. 2020;2(2):100027.

    Article  Google Scholar 

  30. Sapianik AA, Kiskin MA, Kovalenko KA, Samsonenko DG, Dybtsev DN, Audebrand N, Sun Y, Fedin VP. Rational synthesis and dimensionality tuning of MOFs from preorganized heterometallic molecular complexes. Dalton Trans. 2019;48(11):3676.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21971207 and 21801111), the Project of Central Plains Science and Technology Innovation Leading Talents of Henan Province (No. 204200510001), and the Natural Science Foundation of Shaanxi Province (No. 2019JM-013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Ping Yang or Lu-Fang Ma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Liu, J., Han, ML. et al. Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Met. 40, 499–504 (2021). https://doi.org/10.1007/s12598-020-01597-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01597-w

Keywords

Navigation