Skip to main content
Log in

Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

CeO2 is one of the main catalysts for solid oxide fuel cell (SOFC). It is critical to find a green and cost-effective fabrication method for CeO2 at scale. In this study, the CeO2 microspheres were prepared by one-step ultrasonic spray pyrolysis of cerium chloride solution at 700 °C. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) study demonstrate that the prepared CeO2 microspheres exhibit a particle size of 0.01–1.08 μm with a mean particle size of 0.23 μm, and more than 94% of the particles have a diameter less than 0.5 μm. But the presence of residual Cl in the fabricated CeO2 microspheres blocks the active sites and leads to the significant degradation of SOFC performance. The formation mechanism and distribution of residual Cl in the fabricated CeO2 microspheres were systemically studied. The water washing method was shown to effectively reduce the residual Cl in the CeO2 microspheres. Overall, this work provides a clean manufacturing process for the preparation of SOFC electrode/electrolyte materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Leng J, Wang ZX, Wang JX, Wu HH, Yan GC, Li XH, Guo HJ, Liu Y, Zhang QB, Guo ZP. Advances in nanostructures fabricated via spray pyrolysis and their applications in energy storage and conversion. Chem Soc Rev. 2019;48(11):3015.

    Article  CAS  Google Scholar 

  2. Zhao YF, Guo JC. Development of flexible Li-ion batteries for flexible electronics. InfoMat. 2020;2(5):866.

    Article  CAS  Google Scholar 

  3. Krishnaswamy K, Pitchaipillai M, Karunamoorthy S, Karikalan S, Ayyasami K. Photocatalytic degradation of environmental perilous gentian violet dye using leucaena-mediated zinc oxide nanoparticle and its anticancer activity. Rare Met. 2019;38(4):277.

    Article  Google Scholar 

  4. Hegazy AR, Salameh B, Alsmadi A. Optical transitions and photoluminescence of fluorine-doped zinc tin oxide thin films prepared by ultrasonic spray pyrolysis. Ceram Int. 2019;45(15):19473.

    Article  CAS  Google Scholar 

  5. Park SY, Kim Y, Kim T, Eom TH, Kim SY, Jang HW. Chemoresistive materials for electronic nose: progress, perspectives, and challenges. InfoMat. 2019;1(3):289.

    Article  CAS  Google Scholar 

  6. Patil PS. Versatility of chemical spray pyrolysis technique. Mater Chem Phys. 1999;59(3):185.

    Article  CAS  Google Scholar 

  7. Napari M, Huq TN, Hoye RLZ, Driscoll JLM. Nickel oxide thin films grown by chemical deposition techniques: potential and challenges in next generation rigid and flexible device applications. InfoMat. 2020;2(1):1.

    Article  Google Scholar 

  8. Li X, Qi SH, Zhang WC, Feng YZ, Ma JM. Recent progress on FeS2 as anodes for metal-ion batteries. Rare Met. 2020. https://doi.org/10.1007/s12598-020-01492-4.

    Article  Google Scholar 

  9. Jang H, Taniguchi I. Influence of impregnated carbon on preparation and electrochemical properties of Li2FeP2O7 composite synthesized by spray pyrolysis. J Alloys Compd. 2017;709(30):557.

    Article  CAS  Google Scholar 

  10. Mao S, Bao R, Fang D, Yi JH. Facile synthesis of Ag/AgX (X = Cl, Br) with enhanced visible-light-induced photocatalytic activity by ultrasonic spray pyrolysis method. Adv Powder Technol. 2018;29(11):2670.

    Article  CAS  Google Scholar 

  11. Jung DS, Hwang TH, Lee JH, Koo HY, Shakoor RA, Kahraman R, Jo YN, Park MS, Choi JW. Hierarchical porous carbon by ultrasonic spray pyrolysis yields stable cycling in lithium sulfur battery. Nano Lett. 2014;14(8):4418.

    Article  CAS  Google Scholar 

  12. Okuyama K, Lenggoro IW. Preparation of nanoparticles via spray route. Chem Eng Sci. 2003;58(3):537.

    Article  CAS  Google Scholar 

  13. Deepa KG, Jampana N. Development of an automated ultrasonic spray pyrolysis system and the growth of Cu2ZnSnS4 thin films. J Anal Appl Pyrol. 2016;117:141.

    Article  Google Scholar 

  14. Lv L, Wang YL, Cheng PF, Zhang B, Dang F, Xu LP. Ultrasonic spray pyrolysis synthesis of three dimensional ZnFe2O4 based macroporous spheres for excellent sensitive acetone gas sensor. Sens Actuators Chem. 2019;297:126755.

    Article  CAS  Google Scholar 

  15. Yin SH, Chen K, Srinivasakannan C, Guo S, Li SW, Peng JH. Enhancing recovery of ammonia from rare earth wastewater by air stripping combination of microwave heating and high gravity technology. Chem Eng J. 2018;337:515.

    Article  CAS  Google Scholar 

  16. Gao GH, Lai FG, Xu HX, Zhang Q, Guo H, Xiao YF. Enrichment of rare earth from low concentration rare earth sulfate solution by calcium oxide precipitation. Chin J Rare Met. 2019;43(4):409.

    Google Scholar 

  17. Huang XW, Long ZQ, Wang LS, Feng ZY. Technology development for rare earth cleaner hydrometallurgy in China. Rare Met. 2015;34(4):215.

    Article  CAS  Google Scholar 

  18. Kuang ST, Zhang ZF, Li YL, Wei HQ, Liao WP. Extraction and separation of heavy rare earths from chloride medium by α-aminophosphonic acid HEHAPP. J Rare Earths. 2018;36(3):304.

    Article  CAS  Google Scholar 

  19. Ju JW, Huan DM, Zhang YX, Xia CR, Cui GL. Ionic conductivity of infiltrated Ln (Ln = Gd, Sm, Y)-doped ceria. Rare Met. 2018;37(9):734.

    Article  CAS  Google Scholar 

  20. Wu WY, Bian X. Rare earth metallurgy technology. Beijing: The Science Publishing Company; 2012. 216.

    Google Scholar 

  21. Li CQ, Li RX, Cong F, Song XZ, Gu MJ. Solvothermal synthesis of titania/ceria. Rare Met. 2011;30(1):544.

    Article  CAS  Google Scholar 

  22. Escudero MJ, Serrano JL. Individual impact of several impurities on the performance of direct internal reforming biogas solid oxide fuel cell using W-Ni-CeO2 as anode. Int J Hydrog Energy. 2019;44(36):20616.

    Article  CAS  Google Scholar 

  23. Pelleg J. Diffusion in ceramics. Solid mechanics and its applications. Basel: Springer; 2016. 52.

    Google Scholar 

  24. Thommes M, Cychosz KA. Physical adsorption characterization of nanoporous materials: progress and challenges. Adsorption. 2014;20(2–3):233.

    Article  CAS  Google Scholar 

  25. Shi CW, Liu JJ, Wu WY, Bian X, Chen P, Yang Z, Lu CT. Toward understanding of the effect of nucleation temperature on porous structure of micro-mesoporous composite molecular sieves and related crystallization mechanism. Catalysts. 2019;9(9):777.

    Article  CAS  Google Scholar 

  26. Li YJ, Xu P, Chen GL, Mou JR, Xue SF, Li K, Zheng FH, Dong QF, Hu JH, Yang CH, Liu ML. Enhancing Li-S redox kinetics by fabrication of a three dimensional Co/CoP@nitrogen-doped carbon electrocatalyst. Chem Eng J. 2020;380:122595.

    Article  CAS  Google Scholar 

  27. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure Appl Chem. 2015;87(9–10):1051.

    Article  CAS  Google Scholar 

  28. Chiang YC, Chiang PC, Huang CP. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon. 2001;39(4):523.

    Article  CAS  Google Scholar 

  29. Messing GL, Zhang SC, Jayanthi GV. Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc. 1993;76(11):2707.

    Article  CAS  Google Scholar 

  30. Blake PG, Carley AF, Di CV, Roberts MW. Chemisorptive replacement of surface oxygen by hydrogen halides (HCl and HBr) at Pb(110) surfaces. Photoelectron spectroscopic and kinetic evidence for a metastable chloride overlayer. J Chem Soc Faraday Trans Phys Chem Condens Phases. 1986;82(3):723.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2018YFB1502600) the National Natural Science Foundation of China (Nos. 51922042 and 51872098), China Postdoctoral Science Foundation (No. 2019M652888) and the Sino-Singapore International Joint Research Institute (SSIJRI), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Hao Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, SF., Li, YJ., Zheng, FH. et al. Characterization of CeO2 microspheres fabricated by an ultrasonic spray pyrolysis method. Rare Met. 40, 31–39 (2021). https://doi.org/10.1007/s12598-020-01594-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01594-z

Keywords

Navigation