Skip to main content
Log in

Mechanism of adding rhenium to improve hot corrosion resistance of nickel-based single-crystal superalloys

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Hot corrosion behavior in sulfate salt at 950 °C of Rene N5 single-crystal superalloys with 3 wt% rhenium (NSR) was investigated compared with that of nickel-based single-crystal superalloys without rhenium (NS). After 30-h corrosion, the surface of the NS superalloy is seriously corroded. Many holes and exfoliation appear on the surface. The NSR superalloys exhibit better hot corrosion resistance than the NS superalloys. After 30-h corrosion, a continuous and compact Al2O3 film is observed on its surface. The Al2O3 film with dense structure formed on the surface provides protection for the matrix. The characterization results show that Al is aggregated in the γ′ phase, while Re is aggregated in the γ phase during the formation of oxide scale. Considering that Re can inhibit the diffusion of Al in the nickel matrix, it is inferred that Re can inhibit the outward diffusion of Al and prevent the decrease of Al concentration in the γ′ phase. High concentration of Al hinders the decomposition of Al2O3 due to the reaction of acid and basic dissolution. Al2O3 keeps its structure intact and provides protection for the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Reed RC, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater. 2009;57(19):5898.

    Article  CAS  Google Scholar 

  2. Tan JJ, Yang JL, Long AP, Guo JZ. Microstructure and low cycle fatigue property of FGH97 alloy with different atomization methods. Chin J Rare Met. 2019;43(1):52.

    Google Scholar 

  3. Hashizume R, Yoshinari A, Kiyono T, Murata Y, Morinaga M. Development of novel Ni-based single crystal superalloys for power-generation gas turbines. Mater High Temp. 2007;24(3):163.

    Article  CAS  Google Scholar 

  4. Yoshinari A, Tamura O, Murata Y, Morinaga M. Development of ni-based DS superalloy with excellent oxidation resistance and LCF properties for power-generation gas turbines. In: Proceedings of the 12th International Symposium on Superalloys. North Carolina; 2012. 255.

  5. Chang JX, Wang D, Liu XG, Lou LH, Zhang J. Effect of rhenium addition on hot corrosion resistance of ni-based single crystal superalloys. Metall Mater Trans A. 2018;49(9):4343.

    Article  CAS  Google Scholar 

  6. Rapp RA. Hot corrosion of materials: a fluxing mechanism? Corros Sci. 2002;44(2):209.

    Article  CAS  Google Scholar 

  7. Pollock TM, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties. J Propul Power. 2006;22(2):361.

    Article  CAS  Google Scholar 

  8. Kawagishi K, Harada H, Sato A, Sato A, Kobayashi T. The oxidation properties of fourth generation single-crystal nickel-based superalloys. JOM. 2006;58(1):43.

    Article  CAS  Google Scholar 

  9. Akhtar A, Hegde S, Reed RC. The oxidation of single-crystal nickel-based superalloys. JOM. 2006;58(1):37.

    Article  CAS  Google Scholar 

  10. Kawagishi K, Sato A, Sato A, Kobayashi T, Harada H. Oxidation behavior of Ru-containing Ni-base single-crystal superalloys. Mater Sci Forum. 2006;522:317.

    Article  Google Scholar 

  11. Ming H, Jing Z. An overview of rhenium effect in single-crystal superalloys. Rare Met. 2016;35(2):127.

    Article  Google Scholar 

  12. Tao J, Wen ZW, Xiao FS, Zhuang QH. Role of rhenium in single crystal Ni-based superalloys. Mater Sci Forum. 2010;638:2257.

    Google Scholar 

  13. Wang WZ, Jin T, Liu JL, Sun XF, Guan HR, Hu ZQ. Role of Re and Co on microstructures and γ′ coarsening in single crystal superalloys. Mater Sci Eng, A. 2008;479(1):148.

    Google Scholar 

  14. Wanderka N, Glatzel U. Chemical composition measurements of a nickel-base superalloy by atom probe field ion microscopy. Mater Sci Eng, A. 1995;203(1):69.

    Article  Google Scholar 

  15. Blavette D, Cadel E, Pareige C, Deconihout B, Caron P. Phase transformation and segregation to lattice defects in Ni-base superalloys. Microsc Microanal. 2007;13(6):464.

    Article  CAS  Google Scholar 

  16. Mottura A, Warnken N, Miller MK, Finnis MW, Reed RC. Atom probe tomography analysis of the distribution of rhenium in nickel alloys. Acta Mater. 2010;58(3):931.

    Article  CAS  Google Scholar 

  17. Ge BH, Luo YS, Li JR, Zhu J. Distribution of rhenium in a single crystal nickel-based superalloy. Scripta Mater. 2010;63(10):969.

    Article  CAS  Google Scholar 

  18. Ge BH, Luo YS, Li JR, Zhu J. Study of γ/γ′ interfaces in nickel-based, single-crystal superalloys by scanning transmission electron microscopy. Metall Mater Trans A. 2011;42(3):548.

    Article  CAS  Google Scholar 

  19. Fei S, Zhang JX, Mao SC, Ying J, Qiang F, Shen ZJ, Li JX, Zhang Z, Han XD. Kink structures induced in nickel-based single crystal superalloys by high-Z element migration. J Alloy Compd. 2015;618:750.

    Article  Google Scholar 

  20. Huang M, Cheng ZY, Xiong JC, Li JR, Hu JQ, Liu ZL, Zhu J. Coupling between Re segregation and γ/γ′ interfacial dislocations during high-temperature, low-stress creep of a nickel-based single-crystal superalloy. Acta Mater. 2014;76:294.

    Article  CAS  Google Scholar 

  21. Blavette D, Cadel E, Deconihout B. The role of the atom probe in the study of nickel-based superalloys. Mater Charact. 2000;44(1):133.

    Article  CAS  Google Scholar 

  22. Mottura A, Wu RT, Finnis MW, Reed RC. A critique of rhenium clustering in Ni–Re alloys using extended X-ray absorption spectroscopy. Acta Mater. 2008;56(11):2669.

    Article  CAS  Google Scholar 

  23. Mottura A, Finnis MW, Reed RC. On the possibility of rhenium clustering in nickel-based superalloys. Acta Mater. 2012;60(6):2866.

    Article  CAS  Google Scholar 

  24. Murata Y, Moniruzzaman M, Morinaga M, Hashizume R, Yoshinari A. Double bladed effect of re on high-temperature oxidation and hot-corrosion of nickel-based superalloys. Mater Sci Forum. 2003;426:4561.

    Article  Google Scholar 

  25. Jiang H, Dong JX. Hot corrosion behavior and mechanism of FGH96 P/M superalloy in molten NaCl–Na2SO4 salts. Rare Met. 2019. https://doi.org/10.1007/s12598-016-0754-z.

    Article  Google Scholar 

  26. Sato A, Moverare JJ, Hasselqvist M, Reed RC. On the mechanical behavior of a new single-crystal superalloy for industrial gas turbine applications. Metall Mater Trans A. 2012;43(7):2302.

    Article  CAS  Google Scholar 

  27. Liu EZ, Zheng Z, Guan XR, Tong J, Ning LK, Yu YS. Influence of pre-oxidation on the hot corrosion of DZ68 superalloy in the mixture of Na2SO4-NaCl. J Mater Sci Technol. 2010;26(10):895.

    Article  CAS  Google Scholar 

  28. Tong YG, Bai SX, Zhang H, Ye YC. Rhenium coating prepared on carbon substrate by chemical vapor deposition. Appl Surf Sci. 2012;261:390.

    Article  CAS  Google Scholar 

  29. Wang JL, Chen MH, Cheng YX, Yang LL, Bao ZB, Liu L, Zhu SL, Wang FH. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy. Corros Sci. 2017;123:27.

    Article  CAS  Google Scholar 

  30. Rapp RA, Mehl RF, Medalist A. Some generalities in the analyses of equilibria in lonic solutions. Metall Mater Trans A. 2000;31(9):2105.

    Article  Google Scholar 

  31. Rapp RA, Goto KS. The hot corrosion of metals by molten salts. In: Proceedings of the Electrochemical Society. Denver; 1981. 159.

  32. Zeng Q, Ma SW, Zheng YR. Influence of rhenium on diffusion behavior of aluminium in nickel. Chin J Nonferr Met. 2003;13(4):899.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Science and Technology Project of Sichuan Province (No. SC2013510106020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Xian Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, FM., Lian, LX., Liu, Y. et al. Mechanism of adding rhenium to improve hot corrosion resistance of nickel-based single-crystal superalloys. Rare Met. 40, 2076–2082 (2021). https://doi.org/10.1007/s12598-020-01584-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01584-1

Keywords

Navigation