Skip to main content
Log in

Organoimido functionalized trinuclear gold(I) clusters with fluorescent chromophore

  • Communication
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The post-functionalization of gold nanoclusters with organic molecules into organic–inorganic hybrid functional materials is an efficient approach to develop multifunctional materials. By introducing 1-pyrenamine and 3-aminofluoranthene into [O(AuPPh3)3][BF4] with a covalent bond, two novel organoimido functionalized trinuclear gold nanoclusters [C16H9N(AuPPh3)3][BF4] (Au3–P) and [C6H4–C10H5N(AuPPh3)3][BF4] (Au3–F) have been successfully obtained. Their structures have been determined by electrospray ionization mass spectroscopy (ESI–MS) and single-crystal X-ray diffraction (SC-XRD), and the photoluminescence properties have been investigated from both experimental and theoretical aspects. It is found that the lowest-energy electronic transitions in the ultraviolet–visible (UV–Vis) absorption spectra of Au3–P (403 nm) and Au3–F (425 nm) exhibit a slight bathochromic shift compared to the corresponding transitions in the spectra of 1-pyrenamine and 3-aminofluoranthene, respectively. In addition, the dichloromethane solutions of Au3–P and Au3–F complexes clearly display blue and yellowish-green fluorescence, respectively. These results will help to design and prepare organic–inorganic nanocluster hybrid luminescent materials for potential applications in (bio)sensors, bioimaging and optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yang Z, Mao Z, Xie Z, Zhang Y, Liu S, Zhao J, Xu J, Chi Z, Aldred MP. Recent advances in organic thermally activated delayed fluorescence materials. Chem Soc Rev. 2017;46(3):915.

    CAS  Google Scholar 

  2. Liang F, Liu JX. Photoluminescence properties of hexagonal indium tin oxide nanopowders prepared by solvothermal method. Rare Met. 2018;37(1):47.

    CAS  Google Scholar 

  3. Choung KS, Marroquin K, Teets TS. Cyclometalated iridium-BODIPY ratiometric O2 sensors. Chem Sci. 2019;10(19):5124.

    CAS  Google Scholar 

  4. Wang JC, Luo HS, Zhang MH, Zu XH, Zhang J, Gu YX, Yi GB. Design and fabrication of a new fluorescence enhancement system of silver nanoparticles-decorated aligned silver nanowires. Rare Met. 2019;38(12):1178.

    CAS  Google Scholar 

  5. Fan L, Wang X, Ge J, Li F, Zhang C, Lin B, Shuang S, Dong C. A Golgi-targeted off-on fluorescent probe for real-time monitoring of pH changes in vivo. Chem Commun. 2019;55(47):6685.

    CAS  Google Scholar 

  6. Luo X, Xue B, Feng G, Zhang J, Lin B, Zeng P, Li H, Yi H, Zhang XL, Zhu H, Nie Z. Lighting up the native viral RNA genome with a fluorogenic probe for the live-cell visualization of virus infection. J Am Chem Soc. 2019;141(13):5182.

    CAS  Google Scholar 

  7. Fu Y, Han HH, Zhang J, He XP, Feringa BL, Tian H. Photocontrolled fluorescence “double-check” bioimaging enabled by a glycoprobe-protein hybrid. J Am Chem Soc. 2018;140(28):8671.

    CAS  Google Scholar 

  8. Gao JF, Yang JH, Zhang XY, Zhao J, Liu XW, Shi BF. Synthesis and fluorescence properties of CdTe:Eu3+ nanocrystals and core-shell SiO2-coated CdTe:Eu3+ nanospheres. Rare Met. 2019;38(10):989.

    CAS  Google Scholar 

  9. Gui R, Jin H, Bu X, Fu Y, Wang Z, Liu Q. Recent advances in dual-emission ratiometric fluorescence probes for chemo/biosensing and bioimaging of biomarkers. Coordin Chem Rev. 2019;383:82.

    CAS  Google Scholar 

  10. Gao RW, Teraphongphom NT, van den Berg NS, Martin BA, Oberhelman NJ, Divi V, Kaplan MJ, Hong SS, Lu G, Ertsey R, Tummers WSFJ, Gomez AJ, Holsinger FC, Kong CS, Colevas AD, Warram JM, Rosenthal EL. Determination of tumor margins with surgical specimen mapping using near-infrared fluorescence. Cancer Res. 2018;78(17):5144.

    CAS  Google Scholar 

  11. Huang D, Lin S, Wang Q, Zhang Y, Li C, Ji R, Wang M, Chen G, Wang Q. An NIR-II fluorescence/dual bioluminescence multiplexed imaging for in vivo visualizing the location, survival, and differentiation of transplanted stem cells. Adv Funct Mater. 2019;29(2):1806546.

    Google Scholar 

  12. Rossdam C, Konze SA, Oberbeck A, Rapp E, Gerardy-Schahn R, Itzstein M, Buettner FFR. Approach for profiling of glycosphingolipid glycosylation by multiplexed capillary gel electrophoresis coupled to laser-induced fluorescence detection to identify cell-surface markers of human pluripotent stem cells and derived cardiomyocytes. Anal Chem. 2019;91(10):6413.

    CAS  Google Scholar 

  13. Wong MY, Zysman-Colman E. Purely organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Adv Mater. 2017;29(22):1605444.

    Google Scholar 

  14. Miao Q, Pu K. Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv Mater. 2018;30(49):1801778.

    Google Scholar 

  15. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Mirkin CA. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem Rev. 2015;115(19):10530.

    CAS  Google Scholar 

  16. Li J, Yim D, Jang WD, Yoon J. Recent progress in the design and applications of fluorescence probes containing crown ethers. Chem Soc Rev. 2017;46(9):2437.

    CAS  Google Scholar 

  17. Yue GZ, Su S, Li N, Shuai MB, Lai XC, Astruc D, Zhao PX. Gold nanoparticles as sensors in the colorimetric and fluorescence detection of chemical warfare agents. Coordin Chem Rev. 2016;311:75.

    CAS  Google Scholar 

  18. Saha ML, Yan X, Stang PJ. Photophysical properties of organoplatinum(II) compounds and derived self-assembled metallacycles and metallacages: fluorescence and its applications. Acc Chem Res. 2016;49(11):2527.

    CAS  Google Scholar 

  19. Ravotto L, Ceroni P. Aggregation induced phosphorescence of metal complexes: from principles to applications. Coordin Chem Rev. 2017;346:62.

    CAS  Google Scholar 

  20. Li D, Song J, Yin P, Simotwo S, Bassler AJ, Aung YY, Roberts JE, Hardcastle KI, Hill CL, Liu T. Inorganic-organic hybrid vesicles with counterion- and pH-controlled fluorescent properties. J Am Chem Soc. 2011;133(35):14010.

    CAS  Google Scholar 

  21. Parrot A, Bernard A, Jacquart A, Serapian SA, Bo C, Derat E, Oms O, Dolbecq A, Proust A, Métivier R, Mialane P, Izzet G. Photochromism and dual-color fluorescence in a polyoxometalate-benzospiropyran molecular switch. Angew Chem Int Ed. 2017;56(17):4872.

    CAS  Google Scholar 

  22. Higaki T, Li Q, Zhou M, Zhao S, Li Y, Li S, Jin R. Toward the tailoring chemistry of metal nanoclusters for enhancing functionalities. Acc Chem Res. 2018;51(11):2764.

    CAS  Google Scholar 

  23. Lei Z, Wan XK, Yuan SF, Wang JQ, Wang QM. Alkynyl-protected gold and gold-silver nanoclusters. Dalton Trans. 2017;46(11):3427.

    CAS  Google Scholar 

  24. Desireddy A, Conn BE, Guo J, Yoon B, Barnett RN, Monahan BM, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP. Ultrastable silver nanoparticles. Nature. 2013;501(7467):399.

    CAS  Google Scholar 

  25. Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Häkkinen H, Zheng N. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat Commun. 2013;4:2422.

    Google Scholar 

  26. Zhou K, Qin C, Wang XL, Shao KZ, Yan LK, Su ZM. Self-assembly of an all-thiol-stabilized Ag28S23 high-nuclearity luminescent nanocluster with a “crab-like” shape. Dalton Trans. 2014;43(28):10695.

    CAS  Google Scholar 

  27. Lin YM, Guan ZJ, Liu KG, Jiang ZG, Wang QM. Assembly of silver alkynyl compounds with various nuclearities. Dalton Trans. 2015;44(5):2439.

    CAS  Google Scholar 

  28. Yang H, Wang Y, Chen X, Zhao X, Gu L, Huang H, Yan J, Xu C, Li G, Wu J, Edwards AJ, Dittrich B, Tang Z, Wang D, Lehtovaara L, Häkkinen H, Zheng N. Plasmonic twinned silver nanoparticles with molecular precision. Nat Commun. 2016;7:12809.

    CAS  Google Scholar 

  29. Femoni C, Iapalucci MC, Longoni G, Zacchini S, Zarra S. Icosahedral Pt-centered Pt13 and Pt19 carbonyl clusters decorated by [Cd5(μ–Br)5Br5–x(solvent)x]x+ rings reminiscent of the decoration of Au–Fe–CO and Au-thiolate nanoclusters: a unifying approach to their electron counts. J Am Chem Soc. 2011;133(8):2406.

    CAS  Google Scholar 

  30. Mednikov EG, Dahl LF. Ion exchange of protons by coinage metals to give gold and silver encapsulation within a pseudo-D2d distorted face-capped Pd14 cubic kernel: [(µ14–M)Pd22(CO)20(PEt3)8]+ (M = Au, Ag). Angew Chem Int Ed. 2013;52(30):7813.

    CAS  Google Scholar 

  31. Teramoto M, Iwata K, Yamaura H, Kurashima K, Miyazawa K, Kurashige Y, Yamamoto K, Murahashi T. Three-dimensional sandwich nanocubes composed of 13-atom palladium core and hexakis-carbocycle shell. J Am Chem Soc. 2018;140(40):12682.

    CAS  Google Scholar 

  32. Dolzhnikov DS, Iapalucci MC, Longoni G, Tiozzo C, Zacchini S, Femoni C. New high-nuclearity carbonyl and carbonyl-substituted rhodium clusters and their relationships with polyicosahedral carbonyl-substituted palladium- and gold-thiolates. Inorg Chem. 2012;51(21):11214.

    CAS  Google Scholar 

  33. Adams RD, Zhang Q, Yang X. Two-dimensional bimetallic carbonyl cluster complexes with new properties and reactivities. J Am Chem Soc. 2011;133(40):15950.

    CAS  Google Scholar 

  34. Song Y, Fu F, Zhang J, Chai J, Kang X, Li P, Li S, Zhou H, Zhu M. The magic Au60 nanocluster: a new cluster-assembled material with five Au13 building blocks. Angew Chem Int Ed. 2015;54(29):8430.

    CAS  Google Scholar 

  35. Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science. 2016;354(6319):1580.

    CAS  Google Scholar 

  36. Yao LY, Lee TKM, Yam VWW. Thermodynamic-driven self-assembly: heterochiral self-sorting and structural reconfiguration in gold(I)-sulfido cluster system. J Am Chem Soc. 2016;138(23):7260.

    CAS  Google Scholar 

  37. Yan N, Xia N, Liao L, Zhu M, Jin F, Jin R, Wu Z. Unraveling the long-pursued Au144 structure by X-ray crystallography. Sci Adv. 2018;4(10):eaat7259.

    CAS  Google Scholar 

  38. Wang S, Li Q, Kang X, Zhu M. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc Chem Res. 2018;51(11):2784.

    CAS  Google Scholar 

  39. Zhou M, Higaki T, Hu G, Sfeir MY, Chen Y, Jiang D, Jin R. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science. 2019;364(6437):279.

    CAS  Google Scholar 

  40. Schmidbaur H, Kolb A, Bissinger P. Synthesis and structure of trinuclear and novel tetranuclear gold(I) complexes derived from 8-aminoquinoline. Inorg Chem. 1992;31(21):4370.

    CAS  Google Scholar 

  41. Xia A, James AJ, Sharp PR. Gold(I)-mediated rearrangement of 1,2-diphenylhydrazine to semidines. Organometallics. 1999;18(3):451.

    CAS  Google Scholar 

  42. Flint BW, Yang Y, Sharp PR. Gold(I) heteroatom-substituted imido complexes. Amino nitrene loss from [(LAu)3(μ–NNR2)]+. Inorg Chem. 2000;39(3):602.

    CAS  Google Scholar 

  43. He X, Wang Y, Jiang H, Zhao L. Structurally well-defined sigmoidal gold clusters: probing the correlation between metal atom arrangement and chiroptical response. J Am Chem Soc. 2016;138(17):5634.

    CAS  Google Scholar 

  44. Guo P, Yang B, Zhang L, Zhao L. Temperature dependent chiroptical response of sigmoidal gold clusters: probing the stability of chiral metal clusters. Chem Sci. 2018;9(25):5614.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the foundation of Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education (No. KLEM-ZZ201804), the Young Teachers’ Scientific Research Ability Promotion Program of Minzu University of China (No. 2018QNPY57) and Beijing Municipal Natural Science Foundation (No. 2154049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Ya Liu or Zhi-Cheng Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, CL., Yang, CH., Liu, LY. et al. Organoimido functionalized trinuclear gold(I) clusters with fluorescent chromophore. Rare Met. 40, 1437–1442 (2021). https://doi.org/10.1007/s12598-020-01562-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01562-7

Keywords

Navigation