Skip to main content

Advertisement

Log in

Hot pressing sintering process and sintering mechanism of W–La2O3–Y2O3–ZrO2

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The W–La2O3–Y2O3–ZrO2 materials were prepared by vacuum hot pressing sintering process. The microstructure was characterized by scanning electron microscopy (SEM). The effects of sintering temperature, sintering pressure, holding time and heating rate on relative density, hardness and microstructure were studied. The sintering activation energy of the powder was calculated. Based on the result, the best sintering parameters by vacuum hot pressing sintering are as follows: sintering temperature of 1600 °C, sintering pressure of 60 MPa and holding time of 60 min. The heating rate is 10 °C·min−1 from room temperature to 1000 °C and 4 °C·min−1 from 1000 to 1600 °C. Using this process, the grain size is about 3 μm in diameter with relative density at 99.7%, and the hardness is HV 528.5. The sintering characteristic index (n) of the specimen is 4, and the sintering mechanism mainly depends on the diffusion from the surface to the intragranular in the volume diffusion. The sintering activation energy of W–La2O3–Y2O3–ZrO2 material is 286.2 kJ·mol−1, which indicates that the powder has higher activity in sintering process.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang MY, Jia MX, Xiao YW, Sun CY, Li YF, Jin JW. The present situation and countermeasures of substainable development of tungsten resources in China. Nonferrous Met Eng. 2014;4(2):76.

    Google Scholar 

  2. Chen J. Analysis of the present situation of rare earth resources in the world and countermeasures for sustainable development of rare earth resources in China. Res Agric Modernization. 2012;33(1):000074.

    Google Scholar 

  3. Feng F, Lian Y, Wang J, Chen Z, Liu X, Tang J, Huang B. Irradiation effects of H/He neutral beam on different forged tungsten materials. Tungsten. 2019;1(2):169.

    Article  CAS  Google Scholar 

  4. Yin H, Wang J, Guo W, Cheng L, Yuan Y, Lu G. Recent studies of tungsten-based plasma-facing materials in the linear plasma device STEP. Tungsten. 2019;1(2):132.

    Article  Google Scholar 

  5. Hu W, Ma Q, Ma Z, Huang Y, Wang Z, Liu Y. Ultra-fine W–Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering. Tungsten. 2019;1(3):220.

    Article  Google Scholar 

  6. Schade P. 100 years of doped tungsten wire. Int J Refract Met Hard Mater. 2010;28(6):648.

    Article  CAS  Google Scholar 

  7. Kim Y, Lee KH, Kim EP, Cheong DI, Hong SH. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater. 2009;27(5):842.

    Article  CAS  Google Scholar 

  8. Rieth M, Dafferner B. Limitations of W and W–1%La2O3 for use as structural materials. J Nucl Mater. 2005;342(1):20.

    Article  CAS  Google Scholar 

  9. Veleva L, Oksiuta Z, Vogtb U, Baluc N. Sintering and characterization of W–Y and W–Y2O3 materials. Fusion Eng Des. 2009;84(7):1920.

    Article  CAS  Google Scholar 

  10. Cui YT, Zhang SG, Wang M, Zhang X, Ren XJ. Development of multi-element composite rare earth tungsten electrode for high performance plasma spraying gun. Therm Spray Technol. 2014;6(2):24.

    Google Scholar 

  11. OuYang CX, Zhu SG, Ma J, Qu HX, Li Q. The effect of the two stage hot pressing sintering process on the microstructure and mechanical properties of WC-MgO composites. China Nonferrous Met J. 2012;22(12):3395.

    CAS  Google Scholar 

  12. Ma YZ, Huang BY, Liu WS. Research status and development trend of tungsten based alloy materials. Powder Metall Ind. 2005;15(5):46.

    CAS  Google Scholar 

  13. Xiong HP, Zhang LM, Li JG, Shen Q, Yuan RZ. The preparation of W-Mo-Ti-Ti-Al line density gradient material. Chin Nonferrous Met Sinter Process. 2000;10(4):491.

    CAS  Google Scholar 

  14. Zhang L, Chen S, Shan C, Huang FJ, Cheng X, Ma Y. Hot pressing densification of WC-MoxC binderless carbide. Trans Nonferrous Met Soc China. 2012;22(8):2027.

    Article  CAS  Google Scholar 

  15. Zhang S, Fan JL, Cheng HC, Tian JM, Cheng CG. The sintering behavior and microstructure evolution of W–TiC alloy. J Cent South Univ Nat Sci Ed. 2012;43(8):2938.

    CAS  Google Scholar 

  16. Ruan JM, Huang PY. Principles of Powder Metallurgy. Beijing: China Machine Press; 2012. 246.

    Google Scholar 

  17. Wu EX, Wu AH. Effect of sintering temperature on properties of high tungsten heavy alloys. Rare Met Cem Carbides. 2004;32(1):16.

    CAS  Google Scholar 

  18. Lin JZ, Jin ZJ, Shi SJ, Zhong XH, Jiang GN. Hot pressing sintering of tungsten alloys for diamond polishing. Chin J Nonferrous Met. 2015;25(3):682.

    CAS  Google Scholar 

  19. Guo SJ. Theory of Powder Sintering. Beijing: Metallurgical Industry Press; 1998. 338.

    Google Scholar 

  20. Ma YP, Luo H, Song RJ, Zeng KL, Liu KY. Effect of sintering process parameters on mechanical properties of metal injection moulded In713C alloy. Mater Res Appl. 2018;12(2):102.

    Google Scholar 

  21. Liu XJ, Yuan TC, Li RD, Zeng FH, Liu GH. Effect of heating rate on densification of iron powder by spark plasma sintering. Sci Eng Powder Metall Mater. 2017;22(2):177.

    Google Scholar 

  22. Huang PY. Principles of Powder Metallurgy. Beijing: Metallurgical Industry Press; 1997. 272.

    Google Scholar 

  23. Matsui K, Tanaka K, Yamakawa T, Uehara M, Enomoto N, Hojo J. Sintering kinetics at isothermal shrinkage: II, effect of Y2O3 concentration on the initial sintering stage of fine zirconia powder. J Am Ceram Soc. 2007;90(1):44.

    Article  CAS  Google Scholar 

  24. Luis A, Pérez M, José MC, Concepción R. Kinetics of the initial stage of sintering from shrinkage data: simultaneous determination of activation energy and kinetic model from a single nonisothermal experiment. J Am Ceram Soc. 2002;85(4):763.

    Google Scholar 

  25. Sato E, Carry C. Effect of powder granulometry and pre-treatment on sintering behavior of submicron-grained α-Al2O3. J Eur Ceram Soc. 1995;15(1):9.

    Article  CAS  Google Scholar 

  26. Fang TT, Shiue JT, Shiau FS. On the evaluation of the activation energy of sintering. Mater Chem Phys. 2003;80(1):108.

    Article  CAS  Google Scholar 

  27. Hirai S, Shimakage K, Saitou Y, Nishimura T, Uemura Y, Mitomo M, Brewer L. Synthesis and sintering of cerium(III) sulfide powders. J Am Ceram Soc. 1998;81(1):145.

    Article  CAS  Google Scholar 

  28. Guillaume BG, Christian G. Apparent activation energy for the densification of a commercially available granulated zirconia powder. J Am Ceram Soc. 2007;90(4):1246.

    Article  Google Scholar 

  29. Lee WJ, Fang TT. Effect of the strontium: barium ratio and atmosphere on the sintering behavior of strontium barium niobate. J Am Ceram Soc. 1998;81(2):300.

    Article  CAS  Google Scholar 

  30. Tian Y. Vacuum Sintering of Tungsten with Two-Scale Grain Distribution and Its Properties. Xi’an: Chang’an University, 2017. 52.

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation for Innovative Research Group Projects (No. 51621003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Can Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, BG., Yang, JC., Gao, ZK. et al. Hot pressing sintering process and sintering mechanism of W–La2O3–Y2O3–ZrO2. Rare Met. 40, 1949–1956 (2021). https://doi.org/10.1007/s12598-020-01530-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01530-1

Keywords

Navigation