Skip to main content

Advertisement

Log in

Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A two-dimensional (2D) SnNb2O6/amino-functionalized graphene (En-RGO) nanocomposite with a representative 2D–2D architecture has been constructed by an easy self-assembly approach and firstly investigated as anode materials for secondary sodium-ion batteries. The SnNb2O6 nanosheets are evenly anchored with the amino-functionalized graphene through electrostatic attractive interplay between the negatively charged SnNb2O6 and positively charged En-RGO after modification. As a result, a remarkable reversible capacity of 300 mAh·g−1 was obtained at 50 mA·g−1, and significantly, the En-RGO electrode could also deliver ultra-long calendar life up to 1900 cycles with a high reversible capacity of 200 mAh·g−1 at current of 500 mA·g−1. Such excellent electrochemical characteristics can be mainly ascribed to its fast pseudo-capacitive energy storage mechanism, and the capacitive contribution can even reach up to 90% at 1.2 mV·s−1.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li J, Liu WW, Zhou HM, Liu ZZ, Chen BR, Sun WJ. Anode material NbO for Li-ion battery and its electrochemical properties. Rare Met. 2018;37(2):118.

    CAS  Google Scholar 

  2. Lu HH, Shi CS, Zhao NQ, Liu EZ, He CN, He F. Carbon and few-layer MoS2 nanosheets co-modified TiO2 nanosheets with enhanced electrochemical properties for lithium storage. Rare Met. 2018;37(2):107.

    CAS  Google Scholar 

  3. Dong Y, Ma Y, Li D, Liu Y, Chen W, Feng X, Zhang J. Construction of 3D architectures with Ni(HCO3)2 nanocubes wrapped by reduced graphene oxide for LIBs: ultrahigh capacity, ultrafast rate capability and ultralong cycle stability. Chem Sci. 2018;9(46):8682.

    CAS  Google Scholar 

  4. Fan X, Li X. Recent advances in effective protection of sodium metal anode. Nano Energy. 2018;53:630.

    CAS  Google Scholar 

  5. Cheng DL, Yang LC, Zhu M. High-performance anode materials for Na-ion batteries. Rare Met. 2018;37(3):167.

    CAS  Google Scholar 

  6. Qi S, Xu B, Tiong VT, Hu J, Ma J. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.

    CAS  Google Scholar 

  7. Zhao C, Lu Y, Chen L, Hu Y. Flexible Na batteries. InfoMat. 2020;2(1):126.

    CAS  Google Scholar 

  8. Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019;391:123489.

    Google Scholar 

  9. Li Y, Sun CW, Goodenough JB. Electrochemical Lithium Intercalation in Monoclinic Nb12O29. Chem Mater. 2011;23(9):2292.

    CAS  Google Scholar 

  10. Li RJ, Qin Y, Liu X, Yang L, Lin CF, Xia R, Lin SW, Chen YJ, Li JB. Conductive Nb25O62 and Nb12O29 anode materials for use in high-performance lithium-ion storage. Electrochim Acta. 2018;266:202.

    CAS  Google Scholar 

  11. Han JT, Huang YH, Goodenough JB. New anode framework for rechargeable lithium batteries. Chem Mater. 2011;23(8):2027.

    CAS  Google Scholar 

  12. Zhu GZ, Li Q, Che RC. Hollow TiNb2O7@C spheres with superior rate capability and excellent cycle performance as anode material for lithium-ion batteries. Chem Eur J. 2018;24(49):12932.

    CAS  Google Scholar 

  13. Fu QF, Liu X, Hou JR, Pu YR, Lin CF, Yang L, Zhu XZ, Hu L, Lin SW, Luo LJ, Chen YJ. Highly conductive CrNb11O29 nanorods for use in high-energy, safe, fast-charging and stable lithium-ion batteries. J Power Sour. 2018;397:231.

    CAS  Google Scholar 

  14. Pinus I, Catti M, Ruffo R, Salamone MM, Mari CM. Neutron diffraction and electrochemical study of FeNb11O29/Li11FeNb11O29 for lithium battery anode applications. Chem Mater. 2014;26(6):2203.

    CAS  Google Scholar 

  15. Lou XM, Lin CF, Luo Q, Zhao JB, Wang B, Li JB, Shao Q, Guo XK, Wang N, Guo ZH. Crystal structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem. 2017;4(12):3171.

    CAS  Google Scholar 

  16. Yang C, Zhang YL, Lv F, Lin CF, Liu Y, Wang K, Feng JR, Wang XH, Chen YJ, Li JB, Guo SJ. Porous ZrNb24O62 nanowires with pseudocapacitive behavior achieve high-performance lithium-ion storage. J Mater Chem A. 2017;5(42):22297.

    CAS  Google Scholar 

  17. Patous S, Dolle M, Rousse G, Masquelier C. A reversible lithium intercalation process in an ReO3 type structure PNb9O25. J Electrochem Soc. 2002;149(4):A391.

    Google Scholar 

  18. Qian SS, Yu HX, Yan L, Zhu HJ, Cheng X, Xie Y, Long NB, Shui M, Shu J. High-rate long-life pored nanoribbon VNb9O25 built by interconnected ultrafine nanoparticles as anode for lithium-ion batteries. ACS Appl Mater Interfaces. 2017;9(36):30608.

    CAS  Google Scholar 

  19. Zhu XZ, Fu QF, Tang LF, Lin CF, Xu J, Liang GS, Li RJ, Luo LJ, Chen YJ. Mg2Nb34O87 porous microspheres for use in high-energy, safe, fast-charging, and stable lithium-ion batteries. ACS Appl Mater Interfaces. 2018;10(28):23711.

    CAS  Google Scholar 

  20. Yang C, Yu S, Lin CF, Lv F, Wu SQ, Yang Y, Wang W, Zhu ZZ, Li JB, Wang N, Guo SJ. Cr0.5Nb24.5O6.2 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano. 2017;11(4):4217.

    CAS  Google Scholar 

  21. Griffith KJ, Wiaderek KM, Cibin G, Marbella LE, Grey CP. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature. 2018;559:556.

    CAS  Google Scholar 

  22. Liang Y, Zhao J, Han Z, Yu H. Application of lithium rare metal in rechargeable batteries. Chin J Rare Met. 2019;43(11):1187.

    Google Scholar 

  23. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV. Nanostructured materials for advanced energy conversion and storage devices. Nat Mater. 2005;4:366.

    Google Scholar 

  24. Li J, Xu Z, Ji Z, Sun Q, Huang X. Overview on current technologies of recycling spent lithium-ion batteries. Chin J Rare Met. 2019;43(2):201.

    Google Scholar 

  25. Lin CF, Fan XY, Xin YL, Cheng FQ, Lai MO, Zhou HH, Lu L. Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size. J Mater Chem A. 2014;2(26):9982.

    CAS  Google Scholar 

  26. Liu W, Chen Z, Zhou GM, Sun YM, Lee HR, Liu C, Yao HB, Bao ZN, Cui Y. 3D porous sponge-inspired electrode for stretchable lithium-ion batteries. Adv Mater. 2016;28(18):3578.

    CAS  Google Scholar 

  27. Zhao BT, Deng X, Ran R, Liu ML, Shao ZP. Facile synthesis of a 3D nanoarchitectured Li4Ti5O12 electrode for ultrafast energy storage. Adv Energy Mater. 2016;6(4):1500924.

    Google Scholar 

  28. Kim H, Lim E, Jo C, Yoon G, Hwang J, Jeong S, Lee J, Kang K. Ordered-mesoporous Nb2O5/carbon composite as a sodium insertion material. Nano Energy. 2015;16:62.

    CAS  Google Scholar 

  29. Lim E, Jo C, Kim MS, Kim MH, Chun J, Kim H, Park J, Roh KC, Kang K, Yoon S, Lee J. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater. 2016;26(21):3711.

    CAS  Google Scholar 

  30. Wang L, Bi X, Yang S. Partially single-crystalline mesoporous Nb2O5 nanosheets in between graphene for ultrafast sodium storage. Adv Mater. 2016;28(35):7672.

    CAS  Google Scholar 

  31. Yang L, Zhu YE, Sheng J, Li F, Tang B, Zhang Y, Zhou Z. T-Nb2O5/C nanofibers prepared through electrospinning with prolonged cycle durability for high-rate sodium-ion batteries induced by pseudocapacitance. Small. 2017;13(46):1702588.

    Google Scholar 

  32. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS. Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater. 2010;22(46):3906.

    CAS  Google Scholar 

  33. Zhou X, Yin YX, Wan LJ, Guo YG. A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem. 2012;22(34):17456.

    CAS  Google Scholar 

  34. Yang S, Li Y, Sun J, Gao B. Laser induced oxygen-deficient TiO2/graphene hybrid for high-performance supercapacitor. J Power Sour. 2019;431:220.

    CAS  Google Scholar 

  35. Li T, Liu H, Shi P, Zhang Q. Recent progress in carbon/lithium metal composite anode for safe lithium metal batteries. Rare Met. 2018;37(6):449.

    CAS  Google Scholar 

  36. Liang SJ, Liang RW, Wen LR, Yuan RS, Wu L, Fu XZ. Molecular recognitive photocatalytic degradation of various cationic pollutants by the selective adsorption on visible light-driven SnNb2O6 nanosheet photocatalyst. Appl Catal B-Environ. 2012;125:103.

    CAS  Google Scholar 

  37. Cruz LP, Savariault JM, Rocha J, Jumas JC, Jesus JDPD. Synthesis and characterization of tin niobates. J Solid State Chem. 2001;156(2):349.

    CAS  Google Scholar 

  38. Chen D, Ye JH. Selective-synthesis of high-performance single-crystalline Sr2Nb2O7 nanoribbon and SrNb2O6 nanorod photocatalysts. Chem Mat. 2009;21(11):2327.

    CAS  Google Scholar 

  39. Hosogi Y, Tanabe K, Kato H, Kobayashi H, Kudo A. Energy structure and photocatalytic activity of niobates and tantalates containing Sn(II) with a 5s2 electron configuration. Chem Lett. 2004;33(1):28.

    CAS  Google Scholar 

  40. Yuan L, Yang MQ, Xu YJ. Tuning the surface charge of graphene for self-assembly synthesis of a SnNb2O6 nanosheet–graphene (2D–2D) nanocomposite with enhanced visible light photoactivity. Nanoscale. 2014;6(12):6335.

    CAS  Google Scholar 

  41. Yang S, Han Z, Sun J, Yang X, Li C, Wang R, Cao B. Preparation of defective ZnFe2O4/graphene composites and their charge storage properties. Electrochem Commun. 2018;92:19.

    CAS  Google Scholar 

  42. Xie J, Zhang Y, Han Y, Li C. High-capacity molecular scale conversion anode enabled by hybridizing cluster-type framework of high loading with amino-functionalized graphene. ACS Nano. 2016;10(5):5304.

    CAS  Google Scholar 

  43. Santos I, Loureiro LH, Silva MFP, Cavaleiro AMV. Studies on the hydrothermal synthesis of niobium oxides. Polyhedron. 2002;21(20):2009.

    CAS  Google Scholar 

  44. Tang YJ, Liu CH, Huang W, Wang XL, Dong LZ, Li SL, Lan YQ. Bimetallic carbides-based nanocomposite as superior electrocatalyst for oxygen evolution reaction. ACS Appl Mater Interfaces. 2017;9(20):16978.

    Google Scholar 

  45. Huang X, Zhang K, Luo B, Hu H, Sun D, Wang S, Hu Y, Lin T, Jia Z, Wang L. Polyethylenimine expanded graphite oxide enables high sulfur loading and long-term stability of lithium-sulfur batteries. Small. 2019;15(29):1804578.

    Google Scholar 

  46. Lin Z, Xia Q, Wang W, Li W, Chou S. Recent research progresses in ether- and ester-based electrolytes for sodium-ion batteries. InfoMat. 2019;1(3):376.

    CAS  Google Scholar 

  47. Atuchin VV, Kalabin IE, Kesler VG, Pervukhina NV. Nb 3d and O 1s core levels and chemical bonding in niobates. J Electron Spectrosc Relat Phenom. 2005;142(2):129.

    CAS  Google Scholar 

  48. Chao DL, Liang P, Chen Z, Bai LY, Shen H, Liu XX, Xia XH, Zhao YL, Savilov SV, Lin JY, Shen ZX. Pseudocapacitive Na-Ion storage boosts high rate and areal capacity of selfbranched 2D layered metal chalcogenide nanoarrays. ACS Nano. 2016;10(11):10211.

    CAS  Google Scholar 

  49. Muller GA, Cook JB, Kim HS, Tolbert SH, Dunn B. High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 2015;15(3):1911.

    CAS  Google Scholar 

  50. Chao DL, Zhu CR, Yang PH, Xia XH, Liu JL, Wang J, Fan XF, Savilov SV, Lin JY, Fan HJ, Shen ZX. Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nat Commun. 2016;7:12122.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51871113 and 21601071), the Natural Science Foundation of Jiangsu Province (No. BK20160211), and the Key Research and Development Program of Xuzhou (No. KC17004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Huang or Chao Lai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Liu, JX., Huang, P. et al. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 40, 425–432 (2021). https://doi.org/10.1007/s12598-020-01527-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01527-w

Keywords

Navigation