Skip to main content
Log in

Microstructural evolution and numerical simulation of laser-welded Ti2AlNb joints under different heat inputs

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The influence of heat input on the microstructural evolution of laser-welded Ti2AlNb joints was investigated in this study. The thermal cycles during welding process were analyzed by numerical simulation. In the heat affected zone (HAZ), the amount of α2 and O phases decreased with laser power increasing. During the heating period, α2 → B2 and O → B2 transformations occurred, but the decomposition of the B2 phase into α2 and O phases was suppressed during the cooling period. The heat transfer in the HAZ generated more equiaxed B2 grains, fewer LAGBs and a weaker {001}\(<\!\!1{\bar1}0\!\!>\) texture due to recovery, recrystallization and grain growth. The phase composition of the fusion zone remained single with only the B2 phase with the increase in heat input, but the mode of grain growth transformed from cellular growth into cellular dendritic growth. A finite element model was established to simulate the thermal cycles during the welding process. Higher heat input induced higher peak temperature, leading to higher temperatures in the HAZ for longer periods of time, which was beneficial for the α2 → B2 and O → B2 transformations. The calculated cooling rates in both the HAZ and in the fusion zone were faster than the critical cooling rate for B2 → α2 and B2 → O transformations.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Qu W, Sun X, Hui S, Wang Z, Li Y. High-temperature deformation behavior of a beta Ti–3.0Al–3.5Cr–2.0Fe–0.1B alloy. Rare Met. 2018;37(3):217.

    Article  CAS  Google Scholar 

  2. Wang G, Hui S, Ye W, Mi X, Wang Y, Zhang W. Microstructure and tensile properties of low cost titanium alloys at different cooling rate. Rare Met. 2012;31(6):531.

    Article  Google Scholar 

  3. Peters M, Kumpfert J, Ward CH, Leyens C. Titanium alloys for aerospace applications. Adv Eng Mater. 2003;5(6):419.

    Article  CAS  Google Scholar 

  4. Wu Y, Liu G, Liu Z, Tang Z, Wang B. Microstructure, mechanical properties and post-weld heat treatments of dissimilar laser-welded Ti2AlNb/Ti60 sheet. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1047-5.

    Article  Google Scholar 

  5. Liu N, Li Z, Xu W, Wang Y, Zhang G, Yuan H. Hot deformation behavior and microstructural evolution of powder metallurgical TiAl alloy. Rare Met. 2017;36(4):236.

    Article  CAS  Google Scholar 

  6. Liu Y, Yao Z, Guo H. Effect of near isothermal forging on the microstructure of Ti3Al/TC11 welding interface. Rare Met. 2009;28(5):471.

    Article  CAS  Google Scholar 

  7. Boehlert C, Majumdar B, Seetharaman V, Miracle D. Part I. The microstructural evolution in Ti–Al–Nb O + BCC orthorhombic alloys. Metall Mater Trans A. 1999;30(9):2305.

    Article  Google Scholar 

  8. Boehlert C, Part III. The tensile behavior of Ti–Al–Nb O + BCC orthorhombic alloys. Metal Mater Trans A. 2001;32(8):1977.

    Article  Google Scholar 

  9. Boehlert C, Miracle D. Part II. The creep behavior of Ti–Al–Nb O + BCC orthorhombic alloys. Metall Mater Trans A. 1999;30(9):2349.

    Article  Google Scholar 

  10. Cowen C, Boehlert C. Microstructure, creep, and tensile behavior of a Ti–21Al–29Nb (at.%) orthorhombic + B2 alloy. Intermetallics. 2006;14(4):412.

    Article  CAS  Google Scholar 

  11. Xue C, Zeng W, Wang W, Liang X, Zhang J. Quantitative analysis on microstructure evolution and tensile property for the isothermally forged Ti2AlNb based alloy during heat treatment. Mater Sci Eng A. 2013;573:183.

    Article  CAS  Google Scholar 

  12. Wang W, Zeng W, Li D, Zhu B, Zheng Y, Liang X. Microstructural evolution and tensile behavior of Ti2AlNb alloys based α2-phase decomposition. Mater Sci Eng A. 2016;662:120.

    Article  CAS  Google Scholar 

  13. Zhang J, Li S, Liang X, Cheng Y. Research and application of Ti3Al and Ti2AlNb-based alloys. Chin J Nonferr Met. 2010;20(1):336.

    Google Scholar 

  14. Li S, Zhang J, Cheng Y, Liang X. Current status on development of Ti3Al and Ti2AlNb intermetallic structural materials. Rare Met Mater Eng. 2005;34(Supple 3):104.

    Google Scholar 

  15. Cao J, Dai X, Liu J, Si X, Feng J. Relationship between microstructure and mechanical properties of TiAl/Ti2AlNb joint brazed using Ti–27Co eutectic filler metal. Mater Des. 2017;121:176.

    Article  CAS  Google Scholar 

  16. Du Z, Jiang S, Zhang K, Lu Z, Li B, Zhang D. The structural design and superplastic forming/diffusion bonding of Ti2AlNb based alloy for four-layer structure. Mater Des. 2016;104:242.

    Article  CAS  Google Scholar 

  17. Chen X, Xie F, Ma T, Li W, Wu X. Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy. J Alloys Compd. 2015;646:490.

    Article  CAS  Google Scholar 

  18. Chen X, Xie F, Ma T, Li W, Wu X. Effects of post-weld heat treatment on microstructure and mechanical properties of linear friction welded Ti2AlNb alloy. Mater Des. 2016;94:45.

    Article  CAS  Google Scholar 

  19. Lei Z, Dong Z, Chen Y, Zhang J, Zhu R. Microstructure and tensile properties of laser beam welded Ti–22Al–27Nb alloys. Mater Des. 2013;46:151.

    Article  CAS  Google Scholar 

  20. Chen Y, Zhang K, Hu X, Lei Z, Ni L. Study on laser welding of a Ti–22Al–25Nb alloy: microstructural evolution and high temperature brittle behavior. J Alloys Compd. 2016;681:175.

    Article  CAS  Google Scholar 

  21. Raghavan V. Al–Nb–Ti (aluminum–niobium–titanium). J Phase Equilib Diffus. 2005;26(4):360.

    Article  CAS  Google Scholar 

  22. Tang F, Nakazawa S, Hagiwara M. The effect of quaternary additions on the microstructures and mechanical properties of orthorhombic Ti2AlNb-based alloys. Mater Sci Eng A. 2002;329:492.

    Article  Google Scholar 

  23. Tang F, Awane T, Hagiwara M. Effect of compositional modification on Young’s modulus of Ti2AlNb-based alloy. Scr Mater. 2002;46(2):143.

    Article  CAS  Google Scholar 

  24. Boehlert CJ, Majumdar BS, Seetharaman V, Miracle DB. Part I. The microstructural evolution in Ti–Al–Nb O + BCC orthorhombic alloys. Metal Mater Trans A. 1999;30(9):2305.

    Article  Google Scholar 

  25. Muraleedharan K, Nandy T, Banerjee D, Lele S. Transformations in a Ti–24Al–15Nb alloy: part II. A composition invariant βo → O transformation. Metal Trans A. 1992;23(2):417.

    Article  Google Scholar 

  26. Muraleedharan K, Gogia A, Nandy T, Banerjee D, Lele S. Transformations in a Ti–24AI–15Nb alloy: part I. Phase equilibria and microstructure. Metal Trans A. 1992;23(2):401.

    Article  Google Scholar 

  27. Kumpfert J, Kaysser W. Orthorhombic titanium aluminides: phases, phase transformations and microstructure evolution. Z Metal. 2001;92(2):1281.

    Google Scholar 

  28. Baker I. Recovery, recrystallization and grain growth in ordered alloys. Intermetallics. 2000;8(9–11):1183.

    Article  CAS  Google Scholar 

  29. Kou S. Welding Metallurgy. New York: Wiley; 2003. 166.

    Google Scholar 

  30. Mazumder J, Steen W. Heat transfer model for CW laser material processing. J Appl Phys. 1980;51(2):941.

    Article  Google Scholar 

  31. Dai J, Li L, Zhang L. Numerical simulation of temperature and stress fields in wire filling laser multilayer welding. Chin J Lasers. 2011;38(10):1.

    Google Scholar 

  32. Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources. Metal Trans B. 1984;15(2):299.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51804097 and 51879089), State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (No. AWJ-19M16), the Fundamental Research Funds for the Central Universities of China (Nos. 2018B05214 and B200202219) and Changzhou Sci&Tech Program (No. CJ20190049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Long Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, KZ., Lei, ZL., Chen, YB. et al. Microstructural evolution and numerical simulation of laser-welded Ti2AlNb joints under different heat inputs. Rare Met. 40, 2143–2153 (2021). https://doi.org/10.1007/s12598-020-01508-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01508-z

Keywords

Navigation