Skip to main content
Log in

Zr55Al10Ni5Cu30 amorphous alloy film prepared by magnetron sputtering method

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this work, amorphous Zr55Al10Ni5Cu30 alloy thin film was prepared on D36 steel substrate by magnetron sputtering method. The film was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), hardness tester and nano indentation. Corrosion behavior of the film was investigated in 3.5% NaCl aqueous solutions by an electrochemical method. At room temperature, the amorphous alloy film was formed completely after sputtering for 5 h. The surface morphology of the amorphous alloy film was uniform and smooth. Formation of the amorphous alloy film improved the microhardness and corrosion resistance of the D36 substrate. The amorphous alloy film (prepared at room temperature for 5 h) exhibited good adhesion strength with the substrate. The as-sputtered sample exhibited a crevice corrosion trend when the sputtering time was too short (1 h) or too long (10 h).

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zhang D, Kong D. Microstructures and immersion corrosion behavior of laser thermal sprayed amorphous Al–Ni coatings in 3.5% NaCl solution. J Alloys Compd. 2018;735:1.

    Article  CAS  Google Scholar 

  2. Zhao WM, Wang Y, Liu C, Dong LX, Yu HH, Ai H. Erosion–corrosion of thermally sprayed coatings in simulated splash zone. Surf Coat Technol. 2010;205(7):2267.

    Article  CAS  Google Scholar 

  3. Velicu IL, Tiron V, Rusu BG, Popa G. Copper thin films deposited under different power delivery modes and magnetron configurations: a comparative study. Surf Coat Technol. 2017;327:192.

    Article  CAS  Google Scholar 

  4. Zhao YC, Kou SD, Yuan XP, Li CY, Yu P, Pu YL, Xu J. Glass forming ability and mechanical properties of Cu–Zr–Al–Nb amorphous alloy. Rare Met Mater Eng. 2015;44(4):791.

    Article  CAS  Google Scholar 

  5. Nayebossadri S, Greenwood CJ, Speight JD, Book D. Thermal and structural stability of Zr-based amorphous thin films for potential application in hydrogen purification. Sep Purif Technol. 2017;187:173.

    Article  CAS  Google Scholar 

  6. Ockwig NW, Nenoff TM. Membranes for hydrogen separation. Chem Rev. 2007;107(10):4078.

    Article  CAS  Google Scholar 

  7. Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 2000;48(1):279.

    Article  CAS  Google Scholar 

  8. Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloy. Acta Mater. 2011;59(6):2243.

    Article  CAS  Google Scholar 

  9. Zhang W, Zhang Q, Qin C, Inoue A. Synthesis and properties of Cu–Zr–Ag–Al glassy alloys with high glass-forming ability. Mater Sci Eng B. 2008;148(1–3):92.

    CAS  Google Scholar 

  10. Chen W, Wang Y, Qiang J, Dong C. Bulk metallic glasses in the Zr–Al–Ni–Cu system. Acta Mater. 2003;51(7):1899.

    Article  CAS  Google Scholar 

  11. Jiang WH, Jiang F, Green BA, Liu FX, Liaw PK, Choo H, Qiu KQ. Electrochemical corrosion behavior of a Zr-based bulk-metallic glass. Appl Phys Lett. 2007;91(4):041904.

    Article  Google Scholar 

  12. Jin L, Zhou HB, Huang ZZ, Zhang T, Zhi Y. Preparing and anticorrosion properties of Fe and Al-based amorphous coatings. Chin J Rare Met. 2019;43(12):1316.

    Google Scholar 

  13. Liu ZW, Luo Y, Yu DB, Li KS, Yuan C, Xie JJ. Preparation and characterization of bilayer structure of Fe-based amorphous alloy/nitrides. Chin J Rare Met. 2019;43(1):108.

    Google Scholar 

  14. Chen LT, Lee JW, Yang YC, Lou BS, Li CL, Chu JP. Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses. Surf Coat Technol. 2014;260:46.

    Article  CAS  Google Scholar 

  15. Gayen A, Prasad GK, Mallik S, Bedanta S, Perumal A. Effects of composition, thickness and temperature on the magnetic properties of amorphous CoFeB thin films. J Alloys Compd. 2017;694:823.

    Article  CAS  Google Scholar 

  16. Jing Q, Xu Y, Zhang XY, Li G, Li LX, Xu Z, Ma MZ, Liu RP. Zr–Cu amorphous films prepared by magnetron co-sputtering deposition of pure Zr and Cu. Chin Phys Lett. 2009;26(8):225.

    Article  Google Scholar 

  17. Suzuki Y, Fu H, Abe Y, Kawamura M. Effects of substrate temperature on structure and mechanical properties of sputter deposited fluorocarbon thin films. Vacuum. 2013;87:218.

    Article  CAS  Google Scholar 

  18. Meille V. Review on methods to deposit catalysts on structured surfaces. Appl Catal A. 2006;315:1.

    Article  CAS  Google Scholar 

  19. Yu HB, Luo YS, Samwer K. Ultrastable metallic glass. Adv Mater. 2013;25(41):5904.

    Article  CAS  Google Scholar 

  20. Chu JH, Chen HW, Chan YC, Duh JG, Lee JW, Jang JSC. Modification of structure and property in Zr-based thin film metallic glass via processing temperature control. Thin Solid Films. 2014;561:38.

    Article  CAS  Google Scholar 

  21. Kearns KL, Swallen SF, Ediger MD, Wu T, Yu L. Influence of substrate temperature on the stability of glasses prepared by vapor deposition. J Chem Phys. 2007;127(15):154.

    Article  Google Scholar 

  22. Wang X, Zheng WT, Tian HW, Yu SS, Wang LL. Effect of substrate temperature and bias voltage on DC magnetron sputtered Fe–N thin films. J Magn Magn Mater. 2004;283(2–3):282.

    Article  CAS  Google Scholar 

  23. Zheng ZH, Fan P, Liang GX, Zhang DP. Influence of deposition temperature on the microstructure and thermoelectric properties of antimonide cobalt thin films prepared by ion beam sputtering deposition. J Alloys Compd. 2015;619:676.

    Article  CAS  Google Scholar 

  24. Dolan MD, Hara S, Dave NC, Haraya K, Ishitsuka M, Llyushechkin AY, Kata K, Mclennan KG, Morpeth LD, Mukaida M. Thermal stability, glass-forming ability and hydrogen permeability of amorphous Ni64Zr36-XMX (M = Ti, Nb, Mo, Hf, Ta or W) membranes. Sep Purif Technol. 2009;65:298.

    Article  CAS  Google Scholar 

  25. Wang HR, Ye YF, Shi ZQ, Teng XY, Min GH. Crystallization processes in amorphous Zr54Cu46 alloy. J Non-Cryst Solids. 2002;311(1):36.

    Article  CAS  Google Scholar 

  26. Liu SY, Cao QP, Qian X, Wang C, Wang XD, Zhang DX, Hu XL, Xu W, Ferry M, Jiang JZ. Effects of substrate temperature on structure, thermal stability and mechanical property of a Zr-based metallic glass thin film. Thin Solid Films. 2015;595:17.

    Article  CAS  Google Scholar 

  27. Chen CJ, Huang JC, Chou HS, Lai YH, Chang LW, Du XH, Chu JP, Nieh TG. On the amorphous and nanocrystalline Zr–Cu and Zr–Ti co-sputtered thin films. J Alloys Compd. 2009;483:337.

    Article  CAS  Google Scholar 

  28. Thornton JA. The microstructure of sputter-deposited coatings. J Vac Sci Technol A Vac Surf Films. 1986;4(6):3059.

    Article  CAS  Google Scholar 

  29. Turnow H, Wendrock H, Menzel S, Gemming T, Eckert J. Synthesis and characterization of amorphous Ni–Zr thin films. Thin Solid Films. 2014;561:48.

    Article  CAS  Google Scholar 

  30. Skordaris G. Temperature-dependent fatigue strength of diamond coating-substrate interface quantified via the shear failure stress. J Mater Eng Perform. 2015;24(9):3335.

    Article  CAS  Google Scholar 

  31. Zhu SL, Wang XM, Qin FX, Inoue A. The influence of viscous flow deformation on the thermal stability and hardness of ZrCuAlNi bulk glassy alloy. Mater Trans. 2007;48(7):1748.

    Article  CAS  Google Scholar 

  32. Laugier MT. Adhesion of TiC and TiN coatings prepared by chemical vapour deposition on WC-Co-based cemented carbides. J Mater Sci. 1986;21:2269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51771131).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Li Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, DM., Zhu, SL., Liang, YQ. et al. Zr55Al10Ni5Cu30 amorphous alloy film prepared by magnetron sputtering method. Rare Met. 40, 2237–2243 (2021). https://doi.org/10.1007/s12598-020-01459-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01459-5

Keywords

Navigation