Skip to main content

Advertisement

Log in

Recent advances in alloy-based anode materials for potassium ion batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Potassium ion batteries (PIBs) are regarded as one of promising low-cost energy storage technologies. Achieving long cycle life and high energy density has been considered as important tasks for developing high-performance PIBs. The alloy-based anodes for PIBs have attracted great attentions because of their high theoretical capacity and relatively low operating voltage. In this review, the latest advance in the related alloy-based anodes was overviewed. Specifically, the correlations among the morphology and potassium storage performance, phase transition mechanisms, the formation of solid electrolyte interphases and ionic transport kinetics are critically discussed. It is expected that this review will provide meaningful guidance and possible pathways for the developments of alloy-based anodes for PIBs.

Graphic abstract

In this review, the latest advance in the related alloy-based anodes was overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wu Z, Yang J, Yu B, Shi B, Zhao C, Yu Z. Self-healing alginate–carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38:832.

    CAS  Google Scholar 

  2. Xu B, Qi S, Jin M, Cai X, Lai L, Sun Z, Han X, Lin Z, Shao H, Peng P, Xiang Z, ten Elshof JE, Tan R, Liu C, Zhang Z, Duan X, Ma J. 2020 roadmap on two-dimensional materials for energy storage and conversion. Chin Chem Lett. 2019;30(12):2053.

    CAS  Google Scholar 

  3. Wu M, Xu B, Zhang Y, Qi S, Ni W, Hu J, Ma J. Perspectives in emerging bismuth electrochemistry. Chem Eng J. 2020;381:122558.

    CAS  Google Scholar 

  4. Wei Z, Ding B, Dou H, Gascon J, Kong XJ, Xiong Y, Cai B, Zhang R, Zhou Y, Long M, Miao J, Dou Y, Yuan D, Ma J. 2020 roadmap on pore materials for energy and environmental applications. Chin Chem Lett. 2019;30(12):2110.

    CAS  Google Scholar 

  5. Wu D, Wang C, Wu M, Chao Y, He P, Ma J. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J Energy Chem. 2020;43:24.

    Google Scholar 

  6. Yang J, Wan H, Zhang Z, Liu GZ, Xu XX, Hu YS, Yao XY. NASICON-structured Na3.1Zr1.95Mg0.05Si2PO12 solid electrolyte for solid-state sodium batteries. Rare Met. 2018;37(6):480.

    CAS  Google Scholar 

  7. Zhang BW, Sheng T, Wang YX, Chou S, Davey K, Dou SX, Qiao SZ. Long-life room-temperature sodium-sulfur batteries by virtue of transition-metal-nanocluster-sulfur interactions. Angew Chem Int Ed Engl. 2019;58(5):1484.

    CAS  Google Scholar 

  8. Yan Z, Yang QW, Wang Q, Ma J. Nitrogen doped porous carbon as excellent dual anodes for Li- and Na-ion batteries. Chin Chem Lett. 2020;31(2):583.

    CAS  Google Scholar 

  9. Wang L, Xie X, Dinh KN, Yan Q, Ma J. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors. Coordin Chem Rev. 2019;397:138.

    CAS  Google Scholar 

  10. An Y, Chen S, Zou M, Geng LB, Sun XZ, Zhang X, Wang K, Ma YW. Improving anode performances of lithium-ion capacitors employing carbon–Si composites. Rare Met. 2019;38(12):1113.

    CAS  Google Scholar 

  11. Wang R, Wang Q, Yao M, Chen KN, Wang XY, Liu LL, Niu ZQ, Chen J. Flexible ultrathin all-solid-state supercapacitors. Rare Met. 2018;37(6):536.

    CAS  Google Scholar 

  12. Liao J, Ni W, Wang C, Ma J. Layer-structured niobium oxides and their analogues for advanced hybrid capacitors. Chem Eng J. 2019. https://doi.org/10.1016/j.cej.2019.123489.

    Article  Google Scholar 

  13. Choi J-W, Aurbach D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat Rev Mater. 2016;1:16013.

    CAS  Google Scholar 

  14. Li J, Yang J, Wang J, Lu SG. A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries. Rare Met. 2019;38(3):199.

    CAS  Google Scholar 

  15. Qi S, Xu B, Tiong VT, Hu J, Ma J. Progress on iron oxides and chalcogenides as anodes for sodium-ion batteries. Chem Eng J. 2020;379:122261.

    CAS  Google Scholar 

  16. Qi S, Wu D, Dong Y, Liao J, Foster CW, O’Dwyer C, Feng Y, Liu C, Ma J. Cobalt-based electrode materials for sodium-ion batteries. Chem Eng J. 2019;370:185.

    CAS  Google Scholar 

  17. Xu B, Qi S, He P, Ma J. Antimony- and bismuth-based chalcogenides for sodium-ion batteries. Chem Asian J. 2019;14(17):2925.

    CAS  Google Scholar 

  18. Hwang JY, Myung ST, Sun YK. Sodium-ion batteries: present and future. Chem Soc Rev. 2017;46:3529.

    CAS  Google Scholar 

  19. Wu M, Yang J, Ng DHL, Ma J. Rhenium diselenide anchored on reduced graphene oxide as anode with cyclic stability for potassium-ion battery. Phys Status Solidi RRL. 2019;13(10):1900329.

    CAS  Google Scholar 

  20. Zhang WC, Liu YJ, Guo ZP. Approaching high-performance potassium-ion batteries via advanced design strategies and engineering. Sci Adv. 2019;5:eaav7412.

    CAS  Google Scholar 

  21. Zhang W, Pang WK, Sencadas V, Guo Z. Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule. 2018;2(8):1534.

    CAS  Google Scholar 

  22. Xu B, Qi S, Li F, Peng X, Cai J, Liang J, Ma J. Cotton-derived oxygen/sulfur co-doped hard carbon as advanced anode material for potassium-ion batteries. Chin Chem Lett. 2020;31(1):217.

    CAS  Google Scholar 

  23. Xie X, Qi S, Wu D, Wang H, Li F, Peng X, Cai J, Liang J, Ma J. Porous surfur-doped hard carbon for excellent potassium storage. Chin Chem Lett. 2020;31(1):223.

    CAS  Google Scholar 

  24. Wu X, Leonard DP, Ji X. Emerging non-aqueous potassium-ion batteries: challenges and opportunities. Chem Mater. 2017;29(12):5031.

    CAS  Google Scholar 

  25. Hwang JY, Myung ST, Sun YK. Recent progress in rechargeable potassium batteries. Adv Funct Mater. 2018;28(43):1802938.

    Google Scholar 

  26. Wu D, Zhang W, Feng Y, Ma J. Necklace-like carbon nanofibers encapsulating V3S4 microspheres for ultrafast and stable potassium-ion storage. J Mater Chem A. 2020;8:2618.

    CAS  Google Scholar 

  27. Zhao J, Zou X, Zhu Y, Xu Y, Wang C. Electrochemical intercalation of potassium into graphite. Adv Funct Mater. 2016;26(44):8103.

    CAS  Google Scholar 

  28. Kim H, Kim JC, Bianchini M, Seo DH, Rodriguez-Garcia J, Ceder G. Recent progress and perspective in electrode materials for K-ion batteries. Adv Energy Mater. 2018;8(9):1702384.

    Google Scholar 

  29. Song K, Liu C, Mi L, Chou S, Chen W, Shen C. Recent progress on the alloy-based anode for sodium-ion batteries and potassium-ion batteries. Small. 2019. https://doi.org/10.1002/smll.201903194.

    Article  Google Scholar 

  30. Eftekhari A. Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 2017;7:157.

    Google Scholar 

  31. Hu Z, Liu Q, Chou SL, Dou SX. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries. Adv Mater. 2017;29(48):1700606.

    Google Scholar 

  32. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying-dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):1703857.

    Google Scholar 

  33. Wu Y, Huang HB, Feng Y, Wu ZS, Yu Y. The promise and challenge of phosphorus-based composites as anode materials for potassium-ion batteries. Adv Mater. 2019;31(50):1901414.

    CAS  Google Scholar 

  34. Wang B, Lv R, Lan D. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.

    CAS  Google Scholar 

  35. Sultana I, Ramireddy T, Rahman MM, Chen Y, Glushenkov AM. Tin-based composite anodes for potassium-ion batteries. Chem Commun. 2016;52(59):9279.

    CAS  Google Scholar 

  36. Huang B, Pan Z, Su X, An L. Tin-based materials as versatile anodes for alkali (earth)-ion batteries. J Power Sources. 2018;395:41.

    CAS  Google Scholar 

  37. Wang Q, Zhao X, Ni C, Tian H, Li J, Zhang Z, Mao SX, Wang J, Xu Y. Reaction and capacity-fading mechanisms of tin nanoparticles in potassium-ion batteries. J Phys Chem C. 2017;121(23):12652.

    CAS  Google Scholar 

  38. Ramireddy T, Kali R, Jangid MK, Srihari V, Poswal HK, Mukhopadhyay A. Insights into electrochemical behavior, phase evolution and stability of Sn upon K-alloying/de-alloying via in situ studies. J Electrochem Soc. 2017;164:A2360.

    CAS  Google Scholar 

  39. Zhang W, Mao J, Li S, Chen Z, Guo Z. Phosphorus-based alloy materials for advanced potassium-ion battery anode. J Am Chem Soc. 2017;139(9):3316.

    CAS  Google Scholar 

  40. Huang K, Xing Z, Wang L, Wu X, Zhao W, Qi X, Wang H, Ju Z. Direct synthesis of 3D hierarchically porous carbon/Sn composites via in situ generated NaCl crystals as templates for potassium-ion batteries anode. J Mater Chem A. 2018;6(2):434.

    CAS  Google Scholar 

  41. Wang H, Xing Z, Hu Z, Zhang Y, Hu Y, Sun Y, Ju Z, Zhuang Q. Sn-based submicron-particles encapsulated in porous reduced graphene oxide network: advanced anodes for high-rate and long life potassium-ion batteries. Appl Mater Today. 2019;15:58.

    Google Scholar 

  42. Liu Z, Song T, Paik U. Sb-based electrode materials for rechargeable batteries. J Mater Chem A. 2018;6(18):8159.

    CAS  Google Scholar 

  43. Wang H, Wu X, Qi X, Zhao W, Ju Z. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Mater Res Bull. 2018;103:32.

    Google Scholar 

  44. Ko YN, Choi SH, Kim H, Kim HJ. One-pot formation of Sb-carbon microspheres with graphene sheets: potassium-ion storage properties and discharge mechanisms. ACS Appl Mater Interfaces. 2019;11(31):27973.

    CAS  Google Scholar 

  45. Zheng J, Yang Y, Fan X, Ji G, Ji X, Wang H, Hou S, Zachariah MR, Wang C. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ Sci. 2019;12:615.

    CAS  Google Scholar 

  46. Yi Z, Lin N, Zhang W, Wang W, Zhu Y, Qian Y. Preparation of Sb nanoparticles in molten salt and their potassium storage performance and mechanism. Nanoscale. 2018;10(27):13236.

    CAS  Google Scholar 

  47. Han Y, Li T, Li Y, Tian J, Yi Z, Lin N, Qian Y. Stabilizing antimony nanocrystals within ultrathin carbon nanosheets for high-performance K-ion storage. Energy Storage Mater. 2019;20:46.

    Google Scholar 

  48. He XD, Liu ZH, Liao JY, Ding X, Hu Q, Xiao LN, Wang S, Chen CH. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J Mater Chem A. 2019;7(16):9629.

    CAS  Google Scholar 

  49. Sultana I, Rahman MM, Liu J, Sharma N, Ellis AV, Chen Y, Glushenkov AM. Antimony-carbon nanocomposites for potassium-ion batteries: insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J Power Sources. 2019;413:476.

    CAS  Google Scholar 

  50. Liu Q, Fan L, Ma R, Chen S, Yu X, Yang H, Xie Y, Han X, Lu B. Super long-life potassium-ion batteries based on an antimony@carbon composite anode. Chem Commun. 2018;54(83):11773.

    CAS  Google Scholar 

  51. Zhang W, Miao W, Liu X, Li L, Yu Z, Zhang Q. High-rate and ultralong-stable potassium-ion batteries based on antimony-nanoparticles encapsulated in nitrogen and phosphorus co-doped mesoporous carbon nanofibers as an anode material. J Alloys Compd. 2018;769:141.

    CAS  Google Scholar 

  52. Gabaudan V, Touja J, Cot D, Flahaut E, Stievano L, Monconduit L. Double-walled carbon nanotubes, a performing additive to enhance capacity retention of antimony anode in potassium-ion batteries. Electrochem Commun. 2019;105:106493.

    CAS  Google Scholar 

  53. An Y, Tian Y, Ci L, Xiong S, Feng J, Qian Y. Micron-sized nanoporous antimony with tunable porosity for high-performance potassium-ion batteries. ACS Nano. 2018;12(12):12932.

    CAS  Google Scholar 

  54. Luo W, Li F, Zhang W, Han K, Gaumet JJ, Schaefer HE, Mai L. Encapsulating segment-like antimony nanorod in hollow carbon tube as long-lifespan, high-rate anodes for rechargeable K-ion batteries. Nano Res. 2019;12(5):1025.

    CAS  Google Scholar 

  55. Li X, Ni J, Savilov SV, Li L. Materials based on antimony and bismuth for sodium storage. Chem-Eur J. 2018;24:13719.

    CAS  Google Scholar 

  56. Lei K, Wang C, Liu L, Luo Y, Mu C, Li F, Chen J. A porous network of bismuth used as the anode material for high-energy-density potassium-ion batteries. Angew Chem Int Ed Engl. 2018;57(17):4687.

    CAS  Google Scholar 

  57. Yang CY, Chen J, Ji X, Pollard TP, Lu XJ, Sun CJ, Hou S, Liu Q, Liu CM, Qing TT, Wang YQ, Borodin O, Ren Y, Xu K, Wang CS. Aqueous Li-ion battery enabled by halogen conversion-intercalation chemistry in graphite. Nature. 2019;569(7755):245.

    CAS  Google Scholar 

  58. Fan X, Chen L, Ji X, Deng T, Hou S, Chen J, Zheng J, Wang F, Jiang J, Xu K, Wang CS. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem. 2018;4(1):174.

    CAS  Google Scholar 

  59. Zhang Q, Mao J, Pang WK, Zheng T, Sencadas V, Chen Y, Liu Y, Guo Z. Boosting the potassium storage performance of alloy-based anode materials via electrolyte salt chemistry. Adv Energy Mater. 2018;8(15):1703288.

    Google Scholar 

  60. Zhang R, Bao J, Wang Y, Sun CF. Concentrated electrolytes stabilize bismuth-potassium batteries. Chem Sci. 2018;9(29):6193.

    CAS  Google Scholar 

  61. Huang J, Lin X, Tan H, Zhang B. Bismuth microparticles as advanced anodes for potassium-ion battery. Adv Energy Mater. 2018;8(19):1703496.

    Google Scholar 

  62. Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Interfaces. 2019;11(25):22474.

    CAS  Google Scholar 

  63. Cheng X, Li D, Wu Y, Xu R, Yu Y. Bismuth nanospheres embedded in three-dimensional (3D) porous graphene frameworks as high performance anodes for sodium- and potassium-ion batteries. J Mater Chem A. 2019;7(9):4913.

    CAS  Google Scholar 

  64. Qi S, Xie X, Peng X, Ng DHL, Wu M, Liu Q, Yang J, Ma J. Mesoporous carbon-coated bismuth nanorods as anode for potassium-ion batteries. Phys Status Solidi RRL. 2019;13(10):1900209.

    CAS  Google Scholar 

  65. Yang H, Xu R, Yao Y, Ye S, Zhou X, Yu Y. Multicore-shell Bi@N-doped carbon nanospheres for high power density and long cycle life sodium- and potassium-ion anodes. Adv Funct Mater. 2019;29(13):1809195.

    Google Scholar 

  66. Yang D, Liu C, Rui X, Yan Q. Embracing high performance potassium-ion batteries with phosphorus-based electrodes: a review. Nanoscale. 2019;11(33):15402.

    CAS  Google Scholar 

  67. Liu C, Han X, Cao Y, Zhang S, Zhang Y, Sun J. Topological construction of phosphorus and carbon composite and its application in energy storage. Energy Storage Mater. 2019;20:343.

    Google Scholar 

  68. Huang X, Liu D, Guo X, Sui X, Qu D, Chen J. Phosphorus/carbon composite anode for potassium-ion batteries: insights into high initial coulombic efficiency and superior cyclic performance. ACS Sustain Chem Eng. 2018;6(12):16308.

    CAS  Google Scholar 

  69. Wu X, Zhao W, Wang H, Qi X, Xing Z, Zhuang Q, Ju Z. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries. J Power Sources. 2018;378:460.

    CAS  Google Scholar 

  70. Yang W, Lu Y, Zhao C, Liu H. First-principles study of black phosphorus as anode material for rechargeable potassium-ion batteries. Electron Mater Lett. 2019. https://doi.org/10.1007/s13391-019-00178-z.

    Article  Google Scholar 

  71. Sultana I, Rahman MM, Ramireddy T, Chen Y, Glushenkov AM. High capacity potassium-ion battery anodes based on black phosphorus. J Mater Chem A. 2017;5(45):23506.

    CAS  Google Scholar 

  72. Liu D, Huang X, Qu D, Zheng D, Wang G, Harris J, Si J, Ding T, Chen J, Qu D. Confined phosphorus in carbon nanotube-backboned mesoporous carbon as superior anode material for sodium/potassium-ion batteries. Nano Energy. 2018;52:1.

    CAS  Google Scholar 

  73. Chang WC, Wu JH, Chen KT, Tuan HY. Red phosphorus potassium-ion battery anodes. Adv Sci. 2019;6(9):1801354.

    Google Scholar 

  74. Wang H, Wang L, Wang L, Xing Z, Wu X, Zhao W, Qi X, Ju Z, Zhuang Q. Phosphorus particles embedded in reduced graphene oxide matrix to enhance capacity and rate capability for capacitive potassium-ion storage. Chem Eur J. 2018;24:13897.

    CAS  Google Scholar 

  75. Gabaudan V, Berthelot R, Sougrati MT, Lippens PE, Monconduit L, Stievano L. SnSb vs. Sn: improving the performance of Sn-based anodes for K-ion batteries by synergetic alloying with Sb. J Mater Chem A. 2019;7(25):15262.

    CAS  Google Scholar 

  76. Wang Z, Dong K, Wang D, Luo S, Liu Y, Wang Q, Zhang Y, Hao A, Shi C, Zhao N. A nanosized SnSb alloy confined in N-doped 3D porous carbon coupled with ether-based electrolytes toward high-performance potassium-ion batteries. J Mater Chem A. 2019;7(23):14309.

    CAS  Google Scholar 

  77. Huang Z, Chen Z, Ding S, Chen C, Zhang M. Multi-protection from nanochannels and graphene of SnSb-graphene-carbon composites ensuring high properties for potassium-ion batteries. Solid State Ion. 2018;324:267.

    CAS  Google Scholar 

  78. Zhang W, Wu Z, Zhang J, Liu G, Yang NH, Liu RS, Pang WK, Li W, Guo Z. Unraveling the effect of salt chemistry on long-durability high-phosphorus-concentration anode for potassium ion batteries. Nano Energy. 2018;53:967.

    CAS  Google Scholar 

  79. Li D, Zhang Y, Sun Q, Zhang S, Wang Z, Liang Z, Si P, Ci L. Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries. Energy Storage Mater. 2019;23:367.

    Google Scholar 

  80. Yang W, Zhang J, Huo D, Sun S, Tao S, Wang Z, Wang J, Wu D, Qian B. Facile synthesis of tin phosphide/reduced graphene oxide composites as anode material for potassium-ion batteries. Ionics. 2019;25(10):4795.

    CAS  Google Scholar 

  81. Zhao X, Wang W, Hou Z, Wei G, Yu Y, Zhang J, Quan Z. SnP0.94 nanoplates/graphene oxide composite for novel potassium-ion battery anode. Chem Eng J. 2019;370:677.

    CAS  Google Scholar 

  82. Lao M, Zhang Y, Luo W, Yan Q, Sun W, Dou SX. Alloy-based anode materials toward advanced sodium-ion batteries. Adv Mater. 2017;29(48):1700622.

    Google Scholar 

  83. Lee S, Jung SC, Han YK. First-principles molecular dynamics study on ultrafast potassium ion transport in silicon anode. J Power Sources. 2019;415:119.

    CAS  Google Scholar 

  84. Ji B, Zhang F, Song X, Tang Y. A novel potassium-ion-based dual-ion battery. Adv Mater. 2017;29(19):1700519.

    Google Scholar 

  85. Xie D, Zhang M, Wu Y, Xiang L, Tang Y. A flexible dual-ion battery based on sodium-ion quasi-solid-state electrolyte with long cycling life. Adv Funct Mater. 2020;30(5):1906770.

    CAS  Google Scholar 

  86. Zhou X, Liu Q, Jiang C, Ji B, Ji X, Tang Y, Cheng HM. Beyond conventional batteries: strategies towards low-cost dual-ion batteries with high performance. Angew Chem Int Ed. 2019;59(20):3802.

    Google Scholar 

  87. Chang X, Zhou X, Ou X, Lee CS, Zhou J, Tang Y. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672.

    CAS  Google Scholar 

  88. Gabaudan V, Berthelot R, Stievano L, Monconduit L. Electrochemical alloying of lead in potassium-ion batteries. ACS Omega. 2018;3(9):12195.

    CAS  Google Scholar 

  89. Yang Q, Wang Z, Xi W, He G. Tailoring nanoporous structures of Ge anodes for stable potassium-ion batteries. Electrochem Commun. 2019;101:68.

    CAS  Google Scholar 

  90. Cheng XB, Zhang R, Zhao CZ, Wei F, Zhang JG, Zhang Q. A review of solid electrolyte interphases on lithium metal anode. Adv Sci. 2016;3(3):1500213.

    Google Scholar 

  91. Zhang J, Wang DW, Lv W, Zhang S, Liang Q, Zheng D, Kang F, Yang QH. Achieving superb sodium storage performance on carbon anodes through an ether-derived solid electrolyte interphase. Energy Environ Sci. 2017;10(1):370.

    CAS  Google Scholar 

  92. Dugas R, Ponrouch A, Gachot G, David R, Palacin MR, Tarascon JM. Na reactivity toward carbonate-based electrolytes: the effect of FEC as additive. J Electrochem Soc. 2016;163(10):A2333.

    CAS  Google Scholar 

  93. Zhang XQ, Chen X, Cheng XB, Li BQ, Shen X, Yan C, Huang JQ, Zhang Q. Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angew Chem Int Ed Engl. 2018;57(19):5301.

    CAS  Google Scholar 

  94. He H, Sun D, Tang Y, Wang H, Shao M. Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries. Energy Storage Mater. 2019;23:233.

    Google Scholar 

  95. Ling L, Bai Y, Wang Z, Ni Q, Chen G, Zhou Z, Wu C. Remarkable effect of sodium alginate aqueous binder on anatase TiO2 as high-performance anode in sodium ion batteries. ACS Appl Mater Interfaces. 2018;10(6):5560.

    CAS  Google Scholar 

  96. Cheng XB, Zhang R, Zhao CZ, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem Rev. 2017;117(15):10403.

    CAS  Google Scholar 

  97. Sun C, Liu J, Gong Y, Wilkinson DP, Zhang J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy. 2017;33:363.

    CAS  Google Scholar 

  98. Kumari P, Awasthi K, Agarwal S, Ichikawa T, Kumar M, Jain A. Flower-like Bi2S3 nanostructures as highly efficient anodes for all-solid-state lithium-ion batteries. RSC Adv. 2019;9(51):29549.

    CAS  Google Scholar 

  99. Kumari P, Sharma K, Pal P, Kumar M, Ichikawa T, Jain A. Highly efficient & stable Bi & Sb anodes using lithium borohydride as solid electrolyte in Li-ion batteries. RSC Adv. 2019;9(23):13077.

    CAS  Google Scholar 

  100. Nam DH, Kim JW, Lee JH, Lee SY, Shin HAS, Lee SH, Joo YC. Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes. J Mater Chem A. 2015;3(20):11021.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51302079 and 51702138), the Natural Science Foundation of Hunan Province (No. 2017JJ1008) and the Key Research and Development Program of Hunan Province of China (No. 2018GK2031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Wei Deng, Wen-Chao Zhang or Jian-Min Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, SH., Deng, JW., Zhang, WC. et al. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 39, 970–988 (2020). https://doi.org/10.1007/s12598-020-01454-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01454-w

Keywords

Navigation