Skip to main content
Log in

Improvement of isothermal oxidation resistance of a γ′-strengthened Co–Al–W–Mo–Ta–B alloy at 800 °C via doping Ce

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Isothermal oxidation resistance, oxide scale evolution and failure mechanism of Ce-doped Co–Al–W–Mo–Ta–B alloy (0.01 at%, 0.05 at%, 0.10 at% and 0.20 at% Ce) exposed at 800 °C were compared. The 0.01Ce and 0.05Ce alloys were consisted of γ/γ′ coherent microstructure, while the κ-Co3W compound precipitated at the grain boundary of the 0.10Ce and 0.20Ce alloys in addition to the γ/γ′ microstructure. The oxidation kinetics curves of the Ce-doped alloys exhibited a parabolic time dependence on the weight gain. With an increasing nominal Ce content, the weight gain of the Co–Al–W–Mo–Ta–B alloys monotonically decreased. An oxide scale composed of a dense and uniform outer Co3O4 + CoO layer, a middle CoAl2O4 and CoWO4 compound layer and an inner Al2O3 layer. The excellent oxidation resistance of 0.2Ce alloy was mainly attributed to a shorter incubation stage for the formation of the continuous and protective Al2O3 layer and the thickest Al2O3 layer during entire oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sullivan CP. Cobalt Base Superalloys. Cobalt monograph series Brussels: Centre d’Information du Cobalt. 1970. 173.

    Google Scholar 

  2. Gabb TP, Dreshfied RL, Sims CT, Stoloff NS. Superalloys II. Edited by Hagel WC. New York: Wiley. 1987. 264.

    Google Scholar 

  3. Sato J, Omori T, Oikawa K. Cobalt-base high-temperature alloys. Science. 2006;312(5770):90.

    CAS  Google Scholar 

  4. Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall. 1992;40(1):1.

    CAS  Google Scholar 

  5. Kolb M, Freund LP, Fischer F, Povstugar I, Makineni SK, Gault B, Raabe D, Müller J, Spiecker E, Neumeier S, Göken M. On the grain boundary strengthening effect of boron in γ/γ′ cobalt-base superalloys. Acta Mater. 2018;145(2):247.

    CAS  Google Scholar 

  6. Suzuki A, DeNolf GC, Pollock TM. Flow stress anomalies in γ/γ′ two-phase Co–Al–W-base alloys. Scr Mater. 2007;56(5):385.

    CAS  Google Scholar 

  7. Suzuki A, Pollock TM. High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater. 2008;56(5):1288.

    CAS  Google Scholar 

  8. Kobayashi S, Tsukamoto Y, Takasugi T, Chinen H, Omori T, Ishida K, Zaefferer S. Determination of phase equilibria in the Co-rich Co–Al–W ternary system with a diffusion-couple technique. Intermetallics. 2009;17(12):1085.

    CAS  Google Scholar 

  9. Chen M, Wang CY. First-principles investigation of the site preference and alloying effect of Mo, Ta and platinum group metals in γ′-Co3(Al, W). Scr Mater. 2009;60(8):659.

    CAS  Google Scholar 

  10. Titus MS, Mottura A, Viswanathan GB, Suzuki A, Mills MJ, Pollock TM. High resolution energy dispersive spectroscopy mapping of planar defects in L12-containing Co-base superalloys. Acta Mater. 2015;89(5):423.

    CAS  Google Scholar 

  11. Shinagawa K, Omori T, Oikawa K, Kainuma R, Ishida K. Ductility enhancement by boron addition in Co–Al–W high-temperature alloys. Scr Mater. 2009;61(6):612.

    CAS  Google Scholar 

  12. Makineni SK, Nithin B, Chattopadhyay K. Synthesis of a new tungsten-free γ-γ′ cobalt-based superalloy by tuning alloying additions. Acta Mater. 2015;85(2):85.

    CAS  Google Scholar 

  13. Shi L, Yu JJ, Cui CY, Sun XF. Effect of Ta additions on microstructure and mechanical properties of a single-crystal Co–Al–W-base alloy. Mater Lett. 2015;149(6):58.

    CAS  Google Scholar 

  14. Feng G, Li H, Li SS, Sha JB. Effect of Mo additions on microstructure and tensile behavior of a Co–Al–W–Ta–B alloy at room temperature. Scr Mater. 2012;67(5):499.

    CAS  Google Scholar 

  15. Bauer A, Neumeier A, Pyczak F, Göken M. Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr Mater. 2010;63(12):1197.

    CAS  Google Scholar 

  16. Bauer A, Neumeier S, Pyczak F, Singer RF, Göken M. Creep properties of different γ′-strengthened Co-base superalloys. Mater Sci Eng A. 2012;550(7):333.

    CAS  Google Scholar 

  17. Ooshima M, Tanaka K, Okamoto NL, Kishida K, Inui H. Effects of quaternary alloying elements on the γ′ solvus temperature of Co–Al–W based alloys with fcc/L12 two-phase microstructures. J Alloys Compd. 2010;508(1):71.

    CAS  Google Scholar 

  18. Yan HY, Vorontsov VA, Dye D. Alloying effects in polycrystalline γ′ strengthened Co–Al–W base alloys. Intermetallics. 2014;48(11):44.

    CAS  Google Scholar 

  19. Klein L, Bauer A, Neumeier S, Göken M, Virtanen S. High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros Sci. 2011;53(5):2027.

    CAS  Google Scholar 

  20. Klein L, Shen Y, Killian MS, Virtanen S. Effect of B and Cr on the high temperature oxidation behaviour of novel γ/γ′-strengthened Co-base superalloys. Corros Sci. 2011;53(9):2713.

    CAS  Google Scholar 

  21. Neumeier S, Freund LP, Göken M. Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr Mater. 2015;108(12):104.

    Google Scholar 

  22. Yan HY, Vorontsov VA, Dye D. Effect of alloying on the oxidation behaviour of Co–Al–W superalloys. Corros Sci. 2014;83(6):382.

    CAS  Google Scholar 

  23. Klein L, Killian MS, Virtanen S. The effect of nickel and silicon addition on some oxidation properties of novel Co-based high temperature alloys. Corros Sci. 2013;69(6):43.

    CAS  Google Scholar 

  24. Klein L, Bartenwerffer B, Killian MS, Schmuki P, Virtanen S. The effect of grain boundaries on high temperature oxidation of new γ′-strengthened Co–Al–W–B superalloys. Corros Sci. 2014;79(8):29.

    CAS  Google Scholar 

  25. Zhong F, Fan F, Li SS, Sha JB. High-temperature oxidation behaviour of novel Co–Al–W–Ta–B–(Mo, Hf, Nb) alloys with a coherent γ/γ′–dominant microstructure. Prog Nat Sci Mater Int. 2016;26(1):600.

    CAS  Google Scholar 

  26. Stewart CA, Suzuki A, Pollock TM, Levi CG. Rapid assessment of oxidation behavior in Co-based γ/γ′ alloys. Oxid Met. 2018;90(2):485.

    CAS  Google Scholar 

  27. Zhong F, Yu YX, Li SS, Sha JB. In-situ SEM and TEM tensile observations of novel Co–Al–W–Mo–Ta–B-Ce aalloys with a coherent γ-CoSS/γ′-Co3(Al, W) microstructure at room temperature. Mater Sci Eng A. 2017;696(6):96.

    CAS  Google Scholar 

  28. Zhong F, Li SS, Sha JB. Tensile behaviour of Co–Al–W–Ta–B–Mo alloys with a coherent γ/γ′ microstructure at room and high temperatures. Mater Sci Eng A. 2015;637(6):175.

    CAS  Google Scholar 

  29. Zhong F. Effect of Ce Addition on Microstructure, Mechanical Properties, Oxidation and Corrosion Behaviours of Co–Al–W Based Alloys. Beijing: Beihang University. 2017. 153.

    Google Scholar 

  30. Lee DB, Santella ML. High temperature oxidation of Ni3Al alloy containing Cr, Zr, Mo, and B. Mater Sci Eng A. 2004;374(6):217.

    Google Scholar 

  31. Wang GX, Dahms M. TiAl-based alloys prepared by elemental powder metallurgy. Powder Metall Int. 1992;24(9):219.

    CAS  Google Scholar 

  32. Zhang SM, Shi XR, Sha JB. Oxidation behaviours of Nb–22Ti–15Si–2Al–2Hf–2V–(2, 14)Cr alloys with Al and Y modified silicide coatings prepared by pack cementation. Prog Nat Sci Mater Int. 2015;25(5):486.

    CAS  Google Scholar 

  33. Wen SH, Sha JB. Isothermal and cyclic oxidation behaviours of MoSi2 with additions of B at 1250 °C prepared by spark plasma sintering. Mater Charact. 2018;139(5):134.

    CAS  Google Scholar 

  34. Li TF. Oxidation and Corrosion of Metals at High Temperature. Beijing: Chemistry Industrial Press of China. 2003. 52.

    Google Scholar 

  35. Birks N, Meier GH, Pettit FS. Introduction to High Temperature Oxidation of Metals. 2nd ed. Cambridge: Cambridge University Press. 2006. 134.

    Google Scholar 

  36. Samant MS, Kerkar AS, Bharadwaj SR, Dharwadkar SR. Thermodynamic investigation of the vaporization of molybdenum trioxide. J Alloys Compd. 1992;187(2):373.

    CAS  Google Scholar 

  37. Li DQ, Zhou LX, Zhang J, Wang JC, Gu J, Si JJ. Enhanced alumina film adhesion of Hf/Y-doped iron–aluminum alloys during high-temperature oxidation: a new observation. Rare Met. 2019;38(9):877.

    CAS  Google Scholar 

  38. Peng H, Guo HB, He J, Gong SK. Microscale lamellar NiCoCrAlY coating with improved oxidation resistance. Surf Coat Technol. 2012;207(21):110.

    CAS  Google Scholar 

  39. Liang XB, Sheng XF, Li XG, Ma ML, Yuan JW, Jiang QT. Research on thermal shock resistance of micro-arc oxidation ceramic coating on VW75 Mg alloy modified by nano-Al2O3. Chin J Rare Met. 2019;42(7):679.

    Google Scholar 

  40. Wang W, Zhou CG. Characterization of microstructure and oxidation resistance of Y and Ge modified silicide coating on Nb–Si based alloy. Corros Sci. 2016;110(9):114.

    CAS  Google Scholar 

  41. Tian YS, Chen CZ, Chen LX, Huo QH. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scr Mater. 2006;54(5):847.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2017YFB0702902) and the National Natural Science Foundation of China (No. 51471014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Bo Sha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, F., Tao, ZL. & Sha, JB. Improvement of isothermal oxidation resistance of a γ′-strengthened Co–Al–W–Mo–Ta–B alloy at 800 °C via doping Ce. Rare Met. 40, 2065–2075 (2021). https://doi.org/10.1007/s12598-020-01436-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01436-y

Keywords

Navigation