Skip to main content
Log in

Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnesium hydride (MgH2) is a candidate material for hydrogen storage. MgH2–AlH3 composite shows superior hydrogen desorption properties than pure MgH2. However, this composite still suffers from poor cycling performance. In this work, NbF5 was utilized to improve the cycling properties of the MgH2–AlH3 composite. Cycling hydrogen desorption studies show that NbF5 significantly improves the cycling stability of MgH2–AlH3. The MgH2–AlH3–NbF5 composite can release about 2.7 wt% of hydrogen at 300 °C for 1 h and the hydrogen desorption capacity can maintain at 2.7 wt% for more than 100 cycles. In comparison, the hydrogen desorption capacity of the MgH2–AlH3 composite is decreasing with the cycle number increasing. The capacity is reduced from a maximum value of 3.3 wt% to about 1.0 wt% after 40 cycles. Brunauer–Emmett–Teller (BET) surface area measurements show that the particle size of MgH2–AlH3 composite decreases after cycling, which means pulverization of the composite. NbF5 can to some extent suppress the pulverization of the composite during cycling, which partially contributes to the improvement of the cycling hydrogen desorption properties of the material.

Graphic abstract

NbF5 addition significantly improves the cycling hydrogen desorption properties of the MgH2−AlH3 composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schlapbach L, Zuttel A. Hydrogen-storage materials for mobile applications. Nature. 2001;414(6861):353.

    Article  CAS  Google Scholar 

  2. Zhai TT, Xu S, Yang T, Yuan ZM, Zhang YH. Hydrogen storage properties of La1−xPrxMgNi3.6Co0.4 (x = 0–0.4) alloys with annealing treatment. Rare Met. 2019;38(9):871.

    Article  CAS  Google Scholar 

  3. Sayed S, Rouby W, Farghali A. Preparation and characterization of (CeO2)x–(Fe2O3)1−x nanocomposites: reduction kinetics and hydrogen storage. Rare Met. 2020;39(3):218.

    Article  CAS  Google Scholar 

  4. Zhang YH, Gong PF, Li LW, Sun H, Feng DC, Guo SH. Hydrogen storage thermodynamics and dynamics of La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling. Rare Met. 2019;38(12):1144.

    Article  CAS  Google Scholar 

  5. Wang Y, Wang YJ. Recent advances in additive-enhanced magnesium hydride for hydrogen storage. Prog Nat Sci. 2017;27(1):41.

    Article  CAS  Google Scholar 

  6. Sadhasivam T, Kim HT, Jung S, Roh SH, Park JH, Jung HY. Dimensional effects of nanostructured Mg/MgH2 for hydrogen storage applications: a re-view. Renew Sustain Energy Rev. 2017;72:523.

    Article  CAS  Google Scholar 

  7. Zhou CS, Fang ZZ, Lu J, Luo XY, Ren C, Fan P, Ren Y, Zhang XY. Thermodynamic destabilization of magnesium hydride using Mg-based solid solution alloys. J Phys Chem C. 2014;118(22):11526.

    Article  CAS  Google Scholar 

  8. Zhou C, Fang ZZ, Ren C, Li J, Lu J. Effect of Ti intermetallic catalysts on hydrogen storage properties of magnesium hydride. J Phys Chem C. 2013;117(25):12973.

    Article  CAS  Google Scholar 

  9. Zhou C, Fang ZZ, Lu J, Zhang X. Thermodynamic and kinetic destabilization of magnesium hydride using Mg-In solid solution alloys. J Am Chem Soc. 2013;135(30):10982.

    Article  CAS  Google Scholar 

  10. Sun Y, Shen C, Lai Q, Liu W, Wang DW, Aguey-Zinsou KF. Tailoring magnesium based materials for hydrogen storage through synthesis: current state of the art. Energy Storage Mater. 2018;10:168.

    Article  Google Scholar 

  11. Mukherjee D, Okuda J. Molecular Magnesium Hydrides. Angew Chem Int Edition. 2018;57(6):1458.

    Article  CAS  Google Scholar 

  12. Zhang J, Yan S, Qu H. Stress/strain effects on thermodynamic properties of magnesium hydride: a brief review. Int J Hydrogen Energy. 2017;42(26):16603.

    Article  CAS  Google Scholar 

  13. Li C, Wu ZW, Zhang QA. Synthesis and hydrogen desorption kinetics of Mg2FeH6- and Mg2CoH5-based composites with in situ formed YH3 and Mg2NiH4 nanoparticles. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1174-z.

    Article  Google Scholar 

  14. Crivello JC, Dam B, Denys RV. Review of magnesium hydride-based materials: development and optimization. Appl Phys A Mater Sci Process. 2016;122(2):9720.

    Google Scholar 

  15. Zhang YH, Huang G, Yuan ZM, Guo SH, Qi Y, Zhao DL. Electrochemical hydrogen storage behaviors of as-cast and spun RE–Mg–Ni–Co–Al-based AB2-type alloys applied to Ni–MH battery. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1147-2.

    Article  Google Scholar 

  16. Si TZ, Zhang XY, Feng JJ, Ding XL, Li YT. Enhancing hydrogen sorption in MgH2 by controlling particle size and contact of Ni catalysts. Rare Met. 2018. https://doi.org/10.1007/s12598-018-1087-x.

    Article  Google Scholar 

  17. Zhou H, Liu HZ, Xu L, Gao SC, Wang XH, Yan M. Hydrogen storage properties of Nb-compounds-catalyzed LiBH4–MgH2. Rare Met. 2017;36(9):723.

    Article  CAS  Google Scholar 

  18. Liu HZ, Wu C, Zhou H, Chen T, Liu YA, Wang XH, Dong ZH, Ge HW, Li SQ, Yan M. Synergistically thermodynamic and kinetic tailoring of the hydrogen desorption properties of MgH2 by co-addition of AlH3 and CeF3. RSC Adv. 2015;5(28):22091.

    Article  CAS  Google Scholar 

  19. Liu HZ, Wang XH, Liu YA, Dong ZH, Ge HZ, Li SQ, Yan M. Hydrogen desorption properties of the MgH2-AlH3 composites. J Phys Chem C. 2014;118(1):37.

    Article  CAS  Google Scholar 

  20. Liu HZ, Wang XH, Liu YA, Dong ZH, Li SQ, Ge HW, Yan M. Microstructures and hydrogen desorption properties of the MgH2-AlH3 composite with NbF5 addition. J Phys Chem C. 2014;118(33):18908.

    Article  CAS  Google Scholar 

  21. Liu HZ, Wang XH, Liu YA, Dong ZH, Cao GZ, Li SQ, Yan M. Improved hydrogen storage properties of MgH2 by ball milling with AlH3: preparations, de/rehydriding properties, and reaction mechanisms. J Mater Chem A. 2013;1(40):12527.

    Article  CAS  Google Scholar 

  22. Liu HZ, Wang XH, Liu YA, Yan M. Preparations and dehydriding properties of AlH3. Chem J Chin Univ. 2013;34(10):2274.

    CAS  Google Scholar 

  23. Liu HZ, Wang XH, Dong ZH, Cao GZ, Liu YA, Chen LX, Yan M. Dehydriding properties of gamma-AlH3. Int J Hydrogen Energy. 2013;38(25):10851.

    Article  CAS  Google Scholar 

  24. Jin SA, Shim JH, Ahn JP, Cho YW, Yi KW. Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst. Acta Mater. 2007;55(15):5073.

    Article  CAS  Google Scholar 

  25. Kim JW, Ahn JP, Kim DH, Chung HS, Shim JH, Cho YW, Oh KH. In situ transmission electron microscopy study on microstructural changes in NbF5-doped MgH2 during dehydrogenation. Scr Mater. 2010;62(9):701.

    Article  CAS  Google Scholar 

  26. Kim JW, Ahn JP, Jin SA, Lee SH, Chung HS, Shim JH, Cho YW, Oh KH. Microstructural evolution of NbF5-doped MgH2 exhibiting fast hydrogen sorption kinetics. J Power Sources. 2008;178(1):373.

    Article  CAS  Google Scholar 

  27. Zhang LT, Cai ZL, Yao ZD, Ji L, Sun Z, Yan NH, Zhang BY, Xiao BB, Du J, Zhu XQ, Chen LX. A striking catalytic effect of facile synthesized ZrMn2 nanoparticles on the de/rehydrogenation properties of MgH2. J Mater Chem A. 2019;7(10):5626.

    Article  Google Scholar 

  28. Huang YQ, Xia GL, Chen J, Zhang BP, Li Q, Yu XB. One-step uniform growth of magnesium hydride nanoparticles on grapheme. Prog Nat Sci. 2017;27(1):81.

    Article  CAS  Google Scholar 

  29. Ranjbar A, Guo ZP, Yu XB, Wexler D, Calka A, Kim CJ, Liu HK. Hydrogen storage properties of MgH2–SiC composites. Mater Chem Phy. 2009;114(1):168.

    Article  CAS  Google Scholar 

  30. Yu XB, Yang ZX, Liu HK, Grant DM, Walker GS. The effect of a Ti–V-based BCC alloy as a catalyst on the hydrogen storage properties of MgH2. Int J Hydrogen Energy. 2010;35(12):6338.

    Article  CAS  Google Scholar 

  31. Yu XB, Guo YH, Yang H, Wu Z, Grant DM, Walker GS. Improved hydrogen storage in magnesium hydride catalyzed by nanosized Ti0.4Cr0.15Mn0.15V0.3 alloy. J Phys Chem C. 2009;113(13):5324.

    Article  CAS  Google Scholar 

  32. Xia GL, Tan YB, Chen XW, Sun DL, Guo ZP, Liu HK, Ouyang LZ, Zhu M, Yu XB. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on grapheme. Adv Mater. 2015;27(39):5981.

    Article  CAS  Google Scholar 

  33. Yu XB, Tang ZW, Sun DL, Ouyang LZ, Zhu M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci. 2017;88:1.

    Article  Google Scholar 

  34. Luo Q, Gu QF, Liu B, Zhang TF, Liu WQ, Li Q. Achieving superior cycling stability by in situ forming NdH2–Mg–Mg2Ni nanocomposites. J Mater Chem A. 2018;6(46):23308.

    Article  CAS  Google Scholar 

  35. Li Y, Gu QF, Li Q, Zhang TF. In-situ synchrotron X-ray diffraction investigation on hydrogen-induced decomposition of long period stacking ordered structure in Mg–Ni–Y system. Scr Mater. 2017;127:102.

    Article  CAS  Google Scholar 

  36. Li Q, Li Y, Liu B, Lu XG, Zhang TF, Gu QF. The cycling stability of the in situ formed Mg-based nanocomposite catalyzed by YH2. J Mater Chem A. 2017;5(33):17532.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51771171 and 51971199), the Natural Science Foundation of Guangxi Province (Nos. 2019GXNSFBA185004 and 2018GXNSFAA281308) and the Basic Ability Improvement Project for Young and Middle-Aged Teachers in Colleges and Universities in Guangxi (No. 2019KY0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Zhen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, XS., Liu, HZ., Qiu, N. et al. Cycling hydrogen desorption properties and microstructures of MgH2–AlH3–NbF5 hydrogen storage materials. Rare Met. 40, 1003–1007 (2021). https://doi.org/10.1007/s12598-020-01425-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01425-1

Keywords

Navigation