Skip to main content
Log in

Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The practical application of Li–S batteries is severely restricted by limited cycle life and low sulfur loading. Here, a common industrial paint, methylated amino resin (MAR), was employed as a novel multifunctional binder to address these issues. The S cathodes by using MAR binder (S@MAR) demonstrate an excellent reversible capacity of 480.9 mA·h·g−1 after 400 cycles at a rate of 0.5 C, and the sulfur loading in the electrode could achieve as high as 3.0 mg·cm−2. These achievements are ascribed to the superior mechanical property for volume expansion, better adsorption ability toward polysulfides, and more favorable Li+ transportation of MAR, compared to the conventional binders of polyvinylidene difluoride and carboxymethylcellulose. This study paves a new way for obtaining high-energy-density Li–S batteries by the simple application of multifunctional binder that are inherently cost-effective.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gu X, Lai C. One dimensional nanostructures contribute better Li–S and Li–Se batteries: progress, challenges and perspectives. Energy Storage Mater. 2019;23:190.

    Article  Google Scholar 

  2. Huang X, Shen T, Zhang T, Qiu H, Gu X, Ali Z, Hou Y. Efficient oxygen reduction catalysts of porous carbon nanostructures decorated with transition metal species. Adv Energy Mater. 2019;9:1900375.

    Google Scholar 

  3. Zhu Y, Goh FWT, Wang Q. Redox catalysts for aprotic Li–O2 batteries: toward a redox flow system. Nano Mater Sci. 2019;1(3):173.

    Article  Google Scholar 

  4. Zeng LC, Li WH, Jiang Y, Yu Y. Recent progress in Li–S and Li–Se batteries. Rare Met. 2017;36(5):339.

    Article  CAS  Google Scholar 

  5. Li BQ, Kong L, Zhao CX, Jin Q, Chen X, Peng HJ, Qin JL, Chen JX, Zhang Q, Huang JQ. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat. 2019;1(4):533.

    Article  CAS  Google Scholar 

  6. Liu X, Huang JQ, Zhang Q, Mai L. Nanostructured metal oxides and sulfides for lithium–sulfur batteries. Adv Mater. 2017;29(20):1601759.

    Article  Google Scholar 

  7. Ma W, Xu Q. Lithium cobaltate: a novel host material enables high-rate and stable lithium–sulfur batteries. Rare Met. 2018;37(11):929.

    Article  CAS  Google Scholar 

  8. Rehman S, Gu X, Khan K, Mahmood N, Yang W, Huang X, Guo S, Hou Y. 3D vertically aligned and interconnected porous carbon nanosheets as sulfur immobilizers for high performance lithium–sulfur batteries. Adv Energy Mater. 2016;6(12):1502518.

    Article  Google Scholar 

  9. Xie LS, Yu SX, Yang HJ, Yang J, Ni JL, Wang JL. Hierarchical porous carbon derived from animal bone as matric to encapsulated selenium for high performance Li–Se battery. Rare Met. 2017;36(5):434.

    Article  CAS  Google Scholar 

  10. Eshetu GG, Judez X, Li C, Bondarchuk O, Rodriguez-Martinez LM, Zhang H, Armand M. Lithium azide as an electrolyte additive for all-solid-state lithium–sulfur batteries. Angew Chem Int Ed Engl. 2017;56(48):15368.

    Article  CAS  Google Scholar 

  11. Cheng XB, Yan C, Chen X, Guan C, Huang JQ, Peng HJ, Zhang R, Yang ST, Zhang Q. Implantable solid electrolyte interphase in lithium–metal batteries. Chem. 2017;2(2):258.

    Article  CAS  Google Scholar 

  12. Gu X, Tong CJ, Lai C, Qiu J, Huang X, Yang W, Wen B, Liu LM, Hou Y, Zhang S. Porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li–S batteries. J Mater Chem A. 2015;3(32):16670.

    Article  CAS  Google Scholar 

  13. Pei F, Lin L, Fu A, Mo S, Ou D, Fang X, Zheng N. A two-dimensional porous carbon-modified separator for high-energy-density Li–S batteries. Joule. 2018;2(2):323.

    Article  CAS  Google Scholar 

  14. Chen H, Ling M, Hencz L, Ling HY, Li G, Lin Z, Liu G, Zhang S. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev. 2018;118(18):8936.

    Article  CAS  Google Scholar 

  15. Chen W, Lei T, Qian T, Lv W, He W, Wu C, Liu X, Liu J, Chen B, Yan C, Xiong J. A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv Energy Mater. 2018;8(12):1702889.

    Article  Google Scholar 

  16. Zhang SS. Binder based on polyelectrolyte for high capacity density lithium/sulfur battery. J Electrochem Soc. 2012;159(8):A1226.

    Article  CAS  Google Scholar 

  17. Zhou G, Liu K, Fan Y, Yuan M, Liu B, Liu W, Shi F, Liu Y, Chen W, Lopez J, Zhuo D, Zhao J, Tsao Y, Huang X, Zhang Q, Cui Y. An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Cent Sci. 2018;4(2):260.

    Article  CAS  Google Scholar 

  18. Kwok CY, Pang Q, Worku A, Liang X, Gauthier M, Nazar LF. Impact of the mechanical properties of a functionalized cross-linked binder on the longevity of Li–S batteries. ACS Appl Mater Interfaces. 2019;11(25):22841.

    Article  Google Scholar 

  19. Yuan H, Huang JQ, Peng HJ, Titirici MM, Xiang R, Chen R, Liu Q, Zhang Q. A review of functional binders in lithium–sulfur batteries. Adv Energy Mater. 2018;8(31):1802107.

    Article  Google Scholar 

  20. Qi Q, Lv X, Lv W, Yang QH. Multifunctional binder designs for lithium–sulfur batteries. J Energy Chem. 2019;39:88.

    Article  Google Scholar 

  21. Wu X, Luo C, Du L, Xiao Y, Li S, Wang J, Wang C, Deng Y. Exploiting pulping waste as an ecofriendly multifunctional binder for lithium sulfur batteries. ACS Sustain Chem Eng. 2019;7(9):8413.

    Article  CAS  Google Scholar 

  22. Fu S, Sun Z, Huang P, Li Y, Hu N. Some basic aspects of polymer nanocomposites: a critical review. Nano Mater Sci. 2019;1(1):2.

    Article  Google Scholar 

  23. Wang H, Ling M, Bai Y, Chen S, Yuan Y, Liu G, Wu C, Wu F. Cationic polymer binder inhibit shuttle effects through electrostatic confinement in lithium sulfur batteries. J Mater Chem A. 2018;6(16):6959.

    Article  CAS  Google Scholar 

  24. Milroy C, Manthiram A. An elastic, conductive, electroactive nanocomposite binder for flexible sulfur cathodes in lithium–sulfur batteries. Adv Mater. 2016;28(44):9744.

    Article  CAS  Google Scholar 

  25. Tu S, Chen X, Zhao X, Cheng M, Xiong P, He Y, Zhang Q, Xu Y. A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium–sulfur batteries. Adv Mater. 2018;30(45):1804581.

    Article  Google Scholar 

  26. Chu Y, Chen N, Cui X, Liu A, Zhen L, Pan Q. A multi-functional binder for high loading sulfur cathode. J Energy Chem. 2020;46:99.

    Article  Google Scholar 

  27. Fukuda T. Viscoelastic properties and coating performance of water-soluble acrylic copolymers crosslinked with melamine resin. J Appl Polym Sci. 1995;58(11):1925.

    Article  CAS  Google Scholar 

  28. Zhang X, Zhou B, Sun X, Qi G. Preparation and properties of epoxy/phenol formaldehyde novolac/hexakis(methoxymethyl)melamine hybrid resins from in situ polymerization. J Appl Polym Sci. 2008;110(6):4084.

    Article  CAS  Google Scholar 

  29. Choi S, Kwon TW, Coskun A, Choi JW. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science. 2017;357(6348):279.

    Article  CAS  Google Scholar 

  30. Liu T, Chu Q, Yan C, Zhang S, Lin Z, Lu J. Interweaving 3D network binder for high-areal-capacity Si anode through combined hard and soft polymers. Adv Energy Mater. 2019;9(3):1802645.

    Article  Google Scholar 

  31. Gu X, Tong CJ, Rehman S, Liu LM, Hou Y, Zhang S. Multifunctional nitrogen-doped loofah sponge carbon blocking layer for high-performance rechargeable lithium batteries. ACS Appl Mater Interfaces. 2016;8(25):15991.

    Article  CAS  Google Scholar 

  32. Gu X, Xin L, Li Y, Dong F, Fu M, Hou Y. Highly reversible Li–Se batteries with ultra-lightweight N, S-codoped graphene blocking layer. Nano-Micro Lett. 2018;10(4):59.

    Article  Google Scholar 

  33. Sun Y, Li Y, Sun J, Li Y, Pei A, Cui Y. Stabilized Li3N for efficient battery cathode prelithiation. Energy Storage Mater. 2017;6:119.

    Article  Google Scholar 

  34. Pang Q, Tang J, Huang H, Liang X, Hart C, Tam KC, Nazar LF. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium–sulfur batteries. Adv Mater. 2015;27(39):6021.

    Article  CAS  Google Scholar 

  35. Liu QC, Xu JJ, Xu D, Zhang XB. Flexible lithium–oxygen battery based on a recoverable cathode. Nat Commun. 2015;6(1):7892.

    Article  CAS  Google Scholar 

  36. Liao F, Światowska J, Maurice V, Seyeux A, Klein LH, Zanna S, Marcus P. Ageing mechanisms of conversion-type electrode material studied on iron sulfide thin films. Electrochim Acta. 2014;120:359.

    Article  CAS  Google Scholar 

  37. Ma JL, Bao D, Shi MM, Yan JM, Zhang XB. Reversible nitrogen fixation based on a rechargeable lithium–nitrogen battery for energy storage. Chem. 2017;2(4):525.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51902036 and 51865021), the Natural Science Foundation of Chongqing Science & Technology Commission (No. cstc2019jcyj-msxm1407), the Natural Science Foundation of Chongqing Technology and Business University (No. 1952009), the Venture & Innovation Support Program for Chongqing Overseas Returnees (No. CX2018129), the Science and Technology Research Program of Chongqing Municipal Education Commission (Nos. KJQN201900826 and KJQN201800808), the Innovation Group of New Technologies for Industrial Pollution Control of Chongqing Education Commission (No. CXQT19023) and the Open Research Fund of Chongqing Key Laboratory of Catalysis and New Environmental Materials (No. KFJJ2018082).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing-Xing Gu or Jing-Jing Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, XX., Yang, ZG., Qiao, S. et al. Exploiting methylated amino resin as a multifunctional binder for high-performance lithium–sulfur batteries. Rare Met. 40, 529–536 (2021). https://doi.org/10.1007/s12598-020-01409-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01409-1

Keywords

Navigation