Skip to main content
Log in

Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The hot corrosion behavior of yttria-stabilized zirconia (YSZ) powder specimens exposed to Na2SO4/V2O5 salts mixtures at high temperature was evaluated. Initial tests were carried out at 1000 °C for 10 h, the salt concentrations varied from 0.1 wt% to 1.00 wt%, and the Na2SO4/V2O5 mass ratios were between 0.20 and 0.44 following a factorial design 22. X-ray diffraction (XRD) analyses of the tested samples showed with a confidence of 95% that the mixture composed of 32 wt% Na2SO4 + 68 wt% V2O5, and 1.00 wt% salt concentration led to high destabilization of the t′-YSZ phase and formation of YVO4 products. A second set of experiments were conducted to assess the influence of temperature on the hot corrosion response of the YSZ in the range between 490 and 1100 °C. Thermogravimetric analysis (TGA) experiments and Rietveld adjustments of XRD patterns showed that the mass loss of the samples varied with testing temperature and also that the major destabilization of tetragonal phase occurred at 900 °C.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.

    Article  CAS  Google Scholar 

  2. Darolia R. Thermal barrier coatings technology: critical review, progress update, remaining challenges and prospects. Int Mater Rev. 2013;58(6):315.

    Article  CAS  Google Scholar 

  3. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296:280.

    Article  CAS  Google Scholar 

  4. Chen LB. Yttria-stabilized zirconia thermal barrier coatings: a review. Surf Rev Lett. 2006;13:535.

    Article  CAS  Google Scholar 

  5. Loganathan A, Gandhi AS. Toughness evolution in Gd- and Y-stabilized zirconia thermal barrier materials upon high-temperature exposure. J Mater Sci. 2017;52(12):7199.

    Article  CAS  Google Scholar 

  6. Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28:1405.

    Article  CAS  Google Scholar 

  7. Cao XQ, Vassen R, Stoever D. Ceramic materials for thermal barrier coatings. J Eur Ceram Soc. 2004;24(1):1.

    Article  CAS  Google Scholar 

  8. Witz G, Shklover V, Steurer W. Phase evolution in yttria-stabilized zirconia thermal barrier coatings studied by rietveld refinement of X-ray powder diffraction patterns. J Am Ceram Soc. 2007;90:2935.

    Article  CAS  Google Scholar 

  9. Katamura J, Sakuma T. Computer simulation of the microstructural evolution during the diffusionless cubic-to-tetragonal transition in the system ZrO2–Y2O3. Acta Mater. 1998;46:1569.

    Article  CAS  Google Scholar 

  10. Qureshi IN, Shahid M, Nusair Khan A. Hot corrosion of yttria-stabilized zirconia coating, in a mixture of sodium sulfate and vanadium oxide at 950 °C. J Therm Spray Technol. 2016;25(3):567.

    Article  CAS  Google Scholar 

  11. Reddy N, Gandhi AS. Molten salt attack on t′ yttria-stabilized zirconia by dissolution and precipitation. J Eur Ceram Soc. 2013;33(10):1867.

    Article  CAS  Google Scholar 

  12. Daroonparvar M, Yajid MAM, Yusof NM, Bakhsheshi-Rad HR, Hamzah E, Nazoktabar M. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones. J Rare Earths. 2014;32(10):989.

    Article  CAS  Google Scholar 

  13. Jones RL. Some aspects of the hot corrosion of thermal barrier coatings. J Therm Spray Technol. 1997;6(1):77.

    Article  CAS  Google Scholar 

  14. Jonnalagadda K, Eriksson R, Peng R, Johansson S. Factors affecting the performance of thermal barrier coatings in the presence of V2O5 and Na2SO4. J Ceram Sci Technol. 2016;7(4):409.

    Google Scholar 

  15. Zhang YS, Rapp RA. Solubilities of CeO2, HfO2 and Y2O3 in fused Na2SO4-30 mol% NaVO3 and CeO2 in pure Na2SO4 at 900 °C. Corrosion. 1987;43(6):348.

    Article  CAS  Google Scholar 

  16. Liu HF, Xiong X, Li XB, Wang YL. Hot corrosion behavior of Sc2O3–Y2O3–ZrO2 thermal barrier coatings in presence of Na2SO4 + V2O5 molten salt. Corros Sci. 2014;85:87.

    Article  CAS  Google Scholar 

  17. Clarke DR, Levi CG. Materials design for the next generation thermal barrier coatings. Annu Rev Mater Res. 2003;33(1):383.

    Article  CAS  Google Scholar 

  18. Qureshi IN, Shahid M, Nusair Khan A, Durrani YA. Evaluation of titanium nitride-modified bond coat system used in thermal barrier coating in corrosive salts environment at high temperature. J Therm Spray Technol. 2015;24(8):1520.

    Article  CAS  Google Scholar 

  19. Tsai PC, Lee JH, Hsu CS. Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V2O5. Surf Coatings Technol. 2007;201(9):5143.

    Article  CAS  Google Scholar 

  20. Keyvani A. Microstructural stability oxidation and hot corrosion resistance of nanostructured Al2O3/YSZ composite compared to conventional YSZ TBC coatings. J Alloys Compd. 2015;623:229.

    Article  CAS  Google Scholar 

  21. Zaplatynsky I. Performance of laser-glazed zirconia thermal barrier coatings in cyclic oxidation and corrosion burner rig tests. Thin Solid Films. 1982;95(3):275.

    Article  CAS  Google Scholar 

  22. Simms NJ, Kilgallon PJ, Roach C, Oakey JE. Development of oxides at TBC: bond coat interfaces in burner rig exposures. Mater High Temp. 2003;20(4):519.

    CAS  Google Scholar 

  23. Saremi M, Vale Z, Abaeian N. Hot corrosion, high temperature oxidation and thermal shock behavior of nanoagglomerated YSZ: alumina composite coatings produced by plasma spray method. Surf Coatings Technol. 2013;221:133.

    Article  CAS  Google Scholar 

  24. Keyvani A, Saremi M, Heydarzadeh Sohi M. Microstructural stability of zirconia-alumina composite coatings during hot corrosion test at 1050 °C. J Alloys Compd. 2010;506(1):103.

    Article  CAS  Google Scholar 

  25. Xu Z, He L, Mu R, He S, Huang G, Cao X. Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. Surf Coatings Technol. 2010;204(21–22):3652.

    Article  CAS  Google Scholar 

  26. Chen Z, Speakman S, Howe J, Wang H, Porter W, Trice R. Investigation of reactions between vanadium oxide and plasma-sprayed yttria-stabilized zirconia coatings. J Eur Ceram Soc. 2009;29(8):1403.

    Article  CAS  Google Scholar 

  27. Jones RL, Williams CE, Jones SR. Reaction of vanadium compounds with ceramic oxides. J Electrochem Soc. 1986;133(1):227.

    Article  CAS  Google Scholar 

  28. Yugeswaran S, Kobayashi A, Ananthapadmanabhan PV. Hot corrosion behaviors of gas tunnel type plasma sprayed La2Zr2O7 thermal barrier coatings. J Eur Ceram Soc. 2012;32(4):823.

    Article  CAS  Google Scholar 

  29. Leoni M, Jones R, Scardi P. Phase stability of scandia–yttria-stabilized zirconia TBCs. Surf Coatings Technol. 1998;108–109:107.

    Article  Google Scholar 

  30. Wu J, Guo H, Zhou L, Wang L, Gong S. Microstructure and thermal properties of plasma sprayed thermal barrier coatings from nanostructured YSZ. J Therm Spray Technol. 2010;19(6):1186.

    Article  CAS  Google Scholar 

  31. Lughi V, Clarke DR. Transformation of electron-beam physical vapor-deposited 8 wt% yttria-stabilized zirconia thermal barrier coatings. J Am Ceram Soc. 2005;88(9):2552.

    Article  CAS  Google Scholar 

  32. Rapp RA. Chemistry and electrochemistry of hot corrosion of metals. Mater Sci Eng. 1987;87(C):319.

    Article  CAS  Google Scholar 

  33. Ozgurluk Y, Doleker KM, Karaoglanli AC. Hot corrosion behavior of YSZ, Gd2Zr2O7 and YSZ/Gd2Zr2O7 thermal barrier coatings exposed to molten sulfate and vanadate salt. Appl Surf Sci. 2018;438:96.

    Article  CAS  Google Scholar 

  34. Seiersten M, Kofstad P. The effect of SO3 on vanadate-induced hot corrosion. High Temp Technol. 1987;5(3):115.

    Article  CAS  Google Scholar 

  35. Nagelberg AS. Destabilization of yttria-stabilized zirconia induced by molten sodium vanadate-sodium sulfate melts. J Electrochem Soc. 1985;132(10):2502.

    Article  CAS  Google Scholar 

  36. Erdei S, Ainger FW. Crystal growth of YVO4 using the LHPG technique. J Cryst Growth. 1993;128(1–4):1025.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Empresas Públicas de Medellín-EPM (No. 203010022338). Authors also thank Laboratorio de Ingeniería de Superficies y Manufactura Aditiva-LISMA of CIDESI Querétaro for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhonattan De la Roche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De la Roche, J., Alvarado-Orozco, J.M. & Toro, A. Hot corrosion mechanism of yttria-stabilized zirconia powder in the presence of molten Na2SO4 + V2O5 salts. Rare Met. 40, 1307–1316 (2021). https://doi.org/10.1007/s12598-020-01388-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01388-3

Keywords

Navigation