Skip to main content
Log in

Microstructure, tensile properties and free bulge formability of Sr- and Y-containing AZ31 alloy sheet produced by twin-roll casting and sequential hot rolling

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effects of Sr and Y on microstructure, tensile property and free bulge formability of AZ31 alloy sheet produced by twin-roll casting and sequential hot rolling were investigated to improve the mechanical properties and formability of the AZ31 alloy. Sr and Y addition can form Al4Sr, Al2Y and Al3Y phases which can impede dislocation movement and promote dynamic recrystallization during the rolling deformation and decrease the lattice resistance to dislocation motion by decreasing Al solubility in the alloy, resulting in finer grains, lower dislocation density and no twinning generating in the twin-roll casting and sequential hot rolling (TRC-HR) AZ31–1.3Sr–1.0Y alloy. The maximum stress and elongation of the alloy increase significantly after adding Sr and Y. The average cavity and grain sizes of the TRC-HR AZ31–1.3Sr–1.0Y alloy are smaller, resulting in higher elongation in the alloy. The addition of Y and Sr can effectively improve the free bulge formability and the thickness uniform of the alloy. The Al4Sr, Al2Y and Al3Y phases can inhibit the grain growth by obstructing dislocation motion or grain boundary slip, resulting in smaller grain size of AZ31–1.3Sr–1.0Y alloy bulge parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Friedrich H, Schumann S. Research for a “new age of magnesium” in the automotive industry. J Mater Process Technol. 2001;117(3):276.

    CAS  Google Scholar 

  2. Xu W, Birbilis N, Sha G, Wang Y, Daniels JE, Xiao Y, Ferry M. A high-specific-strength and corrosion-resistant magnesium alloy. Nat Mater. 2015;14(12):1229.

    CAS  Google Scholar 

  3. Feng S, Liu W, Zhao J, Wu GH, Zhang HH, Ding WJ. Effect of extrusion ratio on microstructure and mechanical properties of Mg–8Li–3Al–2Zn–0.5Y alloy with duplex structure. Mater Sci Eng A. 2017;692(4):9.

    CAS  Google Scholar 

  4. Wu HR, Du WB, Li SB, Liu K, Wang ZH. Microstructure and mechanical properties of AZ31 magnesium alloy reinforced by I-phase. Rare Met. 2019;38(6):733.

    CAS  Google Scholar 

  5. Zhang K, Li X, Li Y, Yuan J, Liu X, Wang S. Effect of heat treatment on mechanical properties of ZM51 magnesium alloy. Chin J Rare Met. 2019;43(6):585.

    Google Scholar 

  6. Mordike BL, Ebert T. Magnesium: properties—applications—potential. Mater Sci Eng A. 2001;302(1):37.

    Google Scholar 

  7. Liu Y, Wei Y. A polycrystal based numerical investigation on the temperature dependence of slip resistance and texture evolution in magnesium alloy AZ31B. Int J Plast. 2014;55(2):80.

    Google Scholar 

  8. Ali Y, Qiu D, Jiang B, Pan FS, Zhang MX. Current research progress in grain refinement of cast magnesium alloys: a review article. J Alloys Compd. 2015;619(1):639.

    CAS  Google Scholar 

  9. Stjohn DH, Ma Q, Easton MA, Cao P, Hildebrand Z. Grain refinement of magnesium alloys. Metall Mater Trans A. 2005;53(7):841.

    Google Scholar 

  10. Ai X, Quan G. Effect of Ti on the mechanical properties and corrosion of cast AZ91 magnesium alloy. Open Mater Sci J. 2012;6(1):6.

    CAS  Google Scholar 

  11. Choi JY, Kim WJ. Significant effects of adding trace amounts of Ti on the microstructure and corrosion properties of Mg–6Al–1Zn magnesium alloy. J Alloys Compd. 2014;614(2):49.

    CAS  Google Scholar 

  12. Lee TJ, Kim WJ. The significant effect of adding trace amounts of Ti on the high-temperature deformation behavior of fine-grained Mg–6Al–1Zn magnesium alloys. J Alloys Compd. 2014;617(12):352.

    CAS  Google Scholar 

  13. Qian M, StJohn DH. Grain nucleation and formation in Mg–Zr alloys. Int J Cast Met Res. 2009;22(1–4):256.

    CAS  Google Scholar 

  14. Masoudpanah SM, Mahmudi R. Effects of rare-earth elements and Ca additions on the microstructure and mechanical properties of AZ31 magnesium alloy processed by ECAP. Mater Sci Eng A. 2009;526(16):3685.

    Google Scholar 

  15. Liu SF, Li B, Wang XH, Su W, Han H. Refinement effect of cerium, calcium and strontium in AZ91 magnesium alloy. J Mater Process Technol. 2009;209(8):3999.

    CAS  Google Scholar 

  16. Hirai K, Somekawa H, Takigawa Y, Higashi K. Effects of Ca and Sr addition on mechanical properties of a cast AZ91 magnesium alloy at room and elevated temperature. Mater Sci Eng A. 2005;403(1):276.

    Google Scholar 

  17. Harandia SE, Mirshahi M, Koleini S, Idris HM, Jafari H, Kadir MRA. Effect of calcium content on the microstructure, hardness and in vitro corrosion behavior of biodegradable Mg–Ca binary alloy. Mater Res. 2012;16(1):11.

    Google Scholar 

  18. Yan L, Xiao L. Deformation behavior of a coarse-grained Mg-8Al-1.5Ca-0.2Sr magnesium alloy at elevated temperatures. J Mater Eng Perform. 2018;27(2):905.

    Google Scholar 

  19. Kim SH, Bae SW, Lee SW, Moon BG, Kim HS, Kim YM, Yoon J, Park SH. Microstructural evolution and improvement in mechanical properties of extruded AZ31 alloy by combined addition of Ca and Y. Mater Sci Eng A. 2018;725(5):309.

    CAS  Google Scholar 

  20. Srinivasan A, Pillai UTS, Swaminathan J, Das SK, Pai BC. Observations of microstructural refinement in Mg–Al–Si alloys containing strontium. J Mater Sci. 2006;41(18):6087.

    CAS  Google Scholar 

  21. Chen S, Dong X, Ma R, Zhang L, Wang H, Fan Z. Effects of Cu on microstructure, mechanical properties and damping capacity of high damping Mg–1% Mn based alloy. Mater Sci Eng A. 2012;551(31):87.

    CAS  Google Scholar 

  22. Lee S, Lee SH, Kim DH. Effect of Y, Sr and Nd additions on the microstructure and microfracture mechanism of squeeze-cast AZ91-X magnesium alloys. Metall Mater Trans A. 1998;29(4):1221.

    Google Scholar 

  23. Yang M, Pan F, Cheng R, Shen J. Comparison about effects of Sb, Sn and Sr on as-cast microstructure and mechanical properties of AZ61–0.7Si magnesium alloy. Mater Sci Eng A. 2008;489(1–2):413.

    Google Scholar 

  24. Zhang W, Li M, Chen Q, Hu W, Zhang W, Xin W. Effects of Sr and Sn on microstructure and corrosion resistance of Mg–Zr–Ca magnesium alloy for biomedical applications. Mater Des. 2012;39(8):379.

    CAS  Google Scholar 

  25. Chen G, Peng XD, Fan PG, Xie W, Wei Q, Ma H, Yang Y. Effects of Sr and Y on microstructure and corrosion resistance of AZ31 magnesium alloy. Trans Nonferr Metal Soc. 2011;21(4):725.

    CAS  Google Scholar 

  26. Bettles CJ, Gibson MA, Zhu SM. Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy. Mater Sci Eng A. 2009;505(1):6.

    Google Scholar 

  27. Tao W. Influence of rare earth elements on microstructure and mechanical properties of Mg-Li alloys. J Rare Earths. 2006;24(6):797.

    Google Scholar 

  28. Zhang Y, Zeng XQ, Liu LF, Lu C, Zhou HT, Li Q, Zhu YP. Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg-Zn-Y-Zr alloys. Mater Sci Eng A. 2004;373(1):320.

    Google Scholar 

  29. Kashefi N, Mahmudi R. The microstructure and impression creep behavior of cast AZ80 magnesium alloy with yttrium additions. Mater Des. 2012;39(8):200.

    CAS  Google Scholar 

  30. Wang Y, Liao X, Zhu Y. Grain refinement and growth induced by severe plastic deformation. Int J Mater Res. 2009;100(12):1632.

    CAS  Google Scholar 

  31. Kondoh K, Tsuzuki R, Du W, Kamado S. Materials and processing designs for magnesium alloys–grain refining by repeated plastic working and solid-state synthesis of Mg2Si (review). Adv Technol Mater Mater Process. 2004;6(2):328.

    CAS  Google Scholar 

  32. Kang SH, Lee YS, Lee JH. Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics. J Mater Process Technol. 2008;201(1):436.

    CAS  Google Scholar 

  33. Liang D, Cowley CB. The twin-roll strip casting of magnesium. JOM. 2004;56(5):26.

    CAS  Google Scholar 

  34. Watari H, Haga T, Koga N, Davey K. Feasibility study of twin roll casting process for magnesium alloys. J Mater Process Technol. 2007;192(10):300.

    Google Scholar 

  35. Yu YD, Hu Q, Jiang P. Microstructures and mechanical properties of AZ31 + Sr + Y magnesium alloy sheets produced by twin-roll casting and sequential hot rolling. Adv Mater Res. 2013;765–767(3):3176.

    Google Scholar 

  36. Sadeghi A, Pekguleryuz M. Recrystallization and texture evolution of Mg-3%Al-1%Zn-(0.4-0.8)%Sr alloys during extrusion. Mater Sci Eng A. 2011;528(4–5):1678.

    Google Scholar 

  37. Sadeghi A, Hoseini M, Pekguleryuz M. Effect of Sr addition on texture evolution of Mg-3Al-1Zn (AZ31) alloy during extrusion. Mater Sci Eng A. 2011;528(3):3096.

    Google Scholar 

  38. Yu Y, Jiang P, Li C, Lin K. Deformation behaviour of AZ31 magnesium alloy sheets produced by twin-roll casting and sequential hot rolling. Adv Mater Res. 2011;299–300(19):368.

    Google Scholar 

  39. Kaibyshev R, Kazakulov I, Gromov D, Musin F, Lesuer DR, Nieh TG. Superplasticity in a 2219 aluminum alloy. Scr Mater. 2001;44(10):2411.

    CAS  Google Scholar 

  40. Zhang K, Yan H. Deformation behavior of fine-grained 5083Al alloy at elevated temperature. Trans Nonferr Metal Soc. 2009;19(s2):s307.

    CAS  Google Scholar 

  41. Sun PH, Wu HY, Tsai HH, Huang CC, Tzou MD. Effect of pressurization profile on the deformation characteristics of fine-grained AZ31B Mg alloy sheet during gas blow forming. J Mater Process Technol. 2010;210(12):1673.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51705038 and 51875053) and the Natural Science Foundation of Jiangsu Province of China (No. BK20150268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Li, LB., Yu, YD. et al. Microstructure, tensile properties and free bulge formability of Sr- and Y-containing AZ31 alloy sheet produced by twin-roll casting and sequential hot rolling. Rare Met. 39, 1202–1209 (2020). https://doi.org/10.1007/s12598-020-01381-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01381-w

Keywords

Navigation