Skip to main content

Advertisement

Log in

Microstructure and properties of 3D-printed alumina ceramics with different heating rates in vacuum debinding

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of heating rates during vacuum debinding on the microstructure and mechanical properties of alumina ceramics are discussed in this paper. The three-dimensional (3D)-printed alumina ceramics examined in this study were found to have a layered structure, and interlayer spacing increased as the heating rate increased. The pore diameter, shrinkage, flexural strength and hardness were found to decrease as the heating rate increased due to weak interfacial bonding between alumina particles. Shrinkage was found to be much larger along the Z direction than along the X or Y directions due to the layer-by-layer forming mode during 3D printing. 0.5 °C·min−1 is considered the optimum heating rate, yielding ceramics with interlayer spacing of 0.65 µm, shrinkage of 2.6%, 2.3% and 4.0% along the X, Y and Z directions, respectively, flexural strength of 27.5 MPa, hardness of 29.8 GPa, Vickers hardness of HV 266.5, pore diameter of 356.8 nm, bulk density of 2.5 g·cm−3, and open porosity of 38.4%. The debinding procedure used in this study could be used to produce a high-quality ceramic which can be used for fabricating alumina ceramic cores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zanchetta E, Cattaldo M, Franchin G. Stereolithography of SiOC ceramic microcomponents. Adv Mater. 2016;28(2):370.

    Article  CAS  Google Scholar 

  2. Morris VB, Nimbalkar S, Younesi M. Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography. Ann Biomed Eng. 2017;45(1):286.

    Article  Google Scholar 

  3. Halloran JW. Ceramic stereolithography: additive manufacturing for ceramics by photopolymerization. Annu Rev Mater Res. 2016;46:19.

    Article  CAS  Google Scholar 

  4. Liu F, Fan Z, Liu X. Aqueous gel casting of water-soluble calcia-based ceramic core for investment casting using epoxy resin as a binder. Int J Adv Manuf Technol. 2016;86(5):1235.

    Article  Google Scholar 

  5. Kazemi A, Faghihi-Sani MA, Alizadeh HR. Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting. J Eur Ceram Soc. 2013;33(15):3397.

    Article  CAS  Google Scholar 

  6. Panwisawas C, Mathur H, Gebelin JC. Prediction of recrystallization in investment cast single-crystal superalloys. Acta Mater. 2013;61(1):51.

    Article  CAS  Google Scholar 

  7. Chen Z, Li Z, Li J. 3D printing of ceramics: a review. J Eur Ceram Soc. 2018;39(4):661.

    Article  CAS  Google Scholar 

  8. Zhang K, He R, Xie C. Photosensitive ZrO2 suspensions for stereolithography. Ceram Int. 2019;45(9):12189.

    Article  CAS  Google Scholar 

  9. Gorjan L, Blugan G, Graule T. Effectiveness of wick-debinding inside powder bed for ceramic laminates made by tape casting. Powder Technol. 2015;273:197.

    Article  CAS  Google Scholar 

  10. Zhou M, Liu W, Wu H. Preparation of a defect-free alumina cutting tool via additive manufacturing based on stereolithography—optimization of the drying and debinding processes. Ceram Int. 2016;42(10):11598.

    Article  CAS  Google Scholar 

  11. Wu H, Cheng Y, Liu W. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int. 2016;42(15):17290.

    Article  CAS  Google Scholar 

  12. Chen Z, Li D, Zhou W. Process parameters appraisal of fabricating ceramic parts based on stereolithography using the Taguchi method. Proc Inst Mech Eng B J Eng Manuf. 2012;226(7):1249.

    Article  Google Scholar 

  13. Bannister RL, Cheruvu NS, Little DA. Development requirements for an advanced gas turbine system. J Eng Gas Turbines Power. 1995;117(4):724.

    Article  Google Scholar 

  14. Kang H, Li F, Zhao Y. Research status on ceramic cores and shells for superalloy hollow blades investment casting. J Mater Eng. 2013;8:85.

    Google Scholar 

  15. Yan W, Pun CL, Simon GP. Conditions of applying Oliver–Pharr method to the nanoindentation of particles in composites. Compos Sci Technol. 2012;72(10):1147.

    Article  CAS  Google Scholar 

  16. Sahin O, Uzun O, Sopicka-Lizer M. Analysis of load-penetration depth data using Oliver–Pharr and Cheng–Cheng methods of SiAlON–ZrO2 ceramics. J Phys D Appl Phys. 2008;41(3):035305.

    Article  CAS  Google Scholar 

  17. Pharr GM, Oliver WC, Brotzen FR. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J Mater Res. 1992;7(3):613.

    Article  CAS  Google Scholar 

  18. Huang S, Ye C, Zhao H. Additive manufacturing of thin alumina ceramic cores using binder-jetting. Addit Manuf. 2019;29:100802.

    Google Scholar 

  19. Chen Z, Liu C, Li J. Mechanical properties and microstructures of 3D printed bulk cordierite parts. Ceram Int. 2019;45(15):19257.

    Article  CAS  Google Scholar 

  20. Zhang S, Sha N, Zhao Z. Surface modification of α-Al2O3 with dicarboxylic acids for the preparation of UV-curable ceramic suspensions. J Eur Ceram Soc. 2017;37(4):1607.

    Article  CAS  Google Scholar 

  21. Tseng WJ, Hsu CK. Cracking defect and porosity evolution during thermal debinding in ceramic injection moldings. Ceram Int. 1999;25(5):461.

    Article  Google Scholar 

  22. Liu DMO, Tseng WJ. Influence of debinding rate, solid loading and binder formulation on the green microstructure and sintering behaviour of ceramic injection mouldings. Ceram Int. 1998;24(6):471.

    Article  CAS  Google Scholar 

  23. Bandyopadhyay A, Danforth SC, Safari A. Effects of processing history on thermal debinding. J Mater Sci. 2000;35(16):3983.

    Article  CAS  Google Scholar 

  24. Mata-Osoro G, Moya JS, Pecharroman C. Transparent alumina by vacuum sintering. J Eur Ceram Soc. 2012;32(11):2925.

    Article  CAS  Google Scholar 

  25. Hsiang HI, Chen TH, Chuang CC. Synthesis of α-Alumina hexagonal platelets using a mixture of boehmite and potassium sulfate. J Am Ceram Soc. 2007;90(12):4070.

    CAS  Google Scholar 

  26. Jessensky O, Müller F, Gösele U. Self-organized formation of hexagonal pore arrays in anodic alumina. Appl Phys Lett. 1998;72(10):1173.

    Article  CAS  Google Scholar 

  27. Liu H, Ning G, Gan Z. A simple procedure to prepare spherical α-alumina powders. Mater Res Bull. 2009;44(4):785.

    Article  CAS  Google Scholar 

  28. Lamouri S, Hamidouche M, Bouaouadja N. Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Boletín de la sociedad española de cerámica y vidrio. 2017;56(2):47.

    Article  Google Scholar 

  29. Kadleıková M, Breza J, Veselý M. Raman spectra of synthetic sapphire. Microelectron J. 2001;32(12):955.

    Article  Google Scholar 

  30. Coble RL. Sintering crystalline solids. II. Experimental test of diffusion models in powder compacts. J Appl Phys. 1961;32(5):793.

    Article  CAS  Google Scholar 

  31. Chen Y, Bao X, Wong CM. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application. Ceram Int. 2018;44(18):22725.

    Article  CAS  Google Scholar 

  32. Mannschatz A, Müller A, Moritz T. Influence of powder morphology on properties of ceramic injection moulding feedstocks. J Eur Ceram Soc. 2011;31(14):2551.

    Article  CAS  Google Scholar 

  33. Liu K, Sun H, Shi Y. Research on selective laser sintering of Kaolin–epoxy resin ceramic powders combined with cold isostatic pressing and sintering. Ceram Int. 2016;42(9):10711.

    Article  CAS  Google Scholar 

  34. Zhang SX, Ong ZY, Li T. Ceramic composite components with gradient porosity by powder injection moulding. Mater Des. 2010;31(6):2897.

    Article  CAS  Google Scholar 

  35. Pfaffinger M, Mitteramskogler G, Gmeiner R. Thermal debinding of ceramic-filled photopolymers. In 20th Symposium on composites. Vienna: Materials Science Forum; 2015. 825.

    Article  Google Scholar 

  36. Birchall JD, Howard AJ, Kendall K. Flexural strength and porosity of cements. Nature. 1981;289(5796):388.

    Article  CAS  Google Scholar 

  37. Wagh AS, Singh JP, Poeppel RB. Dependence of ceramic fracture properties on porosity. J Mater Sci. 1993;28(13):3589.

    Article  CAS  Google Scholar 

  38. Yue X, Peng X, Wei Z. Effect of heating rate on the strength of ZrB2–SiC composite subjected to cyclic thermal shock. Ceram Int. 2019;45(12):15400.

    Article  CAS  Google Scholar 

  39. Zhang B, Bicanic N, Pearce CJ. Residual fracture properties of normal-and high-strength concrete subject to elevated temperatures. Mag Concr Res. 2000;52(2):123.

    Article  Google Scholar 

  40. Sun Z, Li B, Hu P. Alumina ceramics with uniform grains prepared from Al2O3 nanospheres. J Alloys Compd. 2016;688:933.

    Article  CAS  Google Scholar 

  41. Chakravarty D, Bysakh S, Muraleedharan K. Spark plasma sintering of magnesia-doped alumina with high hardness and fracture toughness. J Am Ceram Soc. 2008;91(1):203.

    Article  CAS  Google Scholar 

  42. He J, Lin T, Shao H, Zhao L, Zhao D. 3D printing of NdFeB rare earth permanent magnet. Chin J Rare Met. 2018;42(6):657.

    Google Scholar 

  43. Yu J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. Chin J Rare Met. 2018;42(5):449.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2018YFB1106600) and the National Natural Science Foundation of China (No. 51672217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Sheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Liu, YS., Liu, YS. et al. Microstructure and properties of 3D-printed alumina ceramics with different heating rates in vacuum debinding. Rare Met. 39, 577–588 (2020). https://doi.org/10.1007/s12598-020-01372-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01372-x

Keywords

Navigation