Skip to main content
Log in

Microstructure, fracture behavior, in vitro corrosion resistance, and cytotoxicity of Zn–Mg/Mg–Zn–HAp laminated composites produced by spark plasma sintering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ideal biodegradable materials exhibit suitable degradation rates and sufficient mechanical properties for their specific application. With these parameters in mind, Zn–Mg/Mg–Zn–hydroxyapatite (HAp) laminated composites were designed and fabricated by spark plasma sintering. This paper describes the structure, mechanical properties, in vitro corrosion resistance, and cytotoxicity of the Zn–Mg/Mg–Zn–HAp laminated composites. The compressive strength and elastic moduli of the laminated composites matched that of cortical bone and could effectively reduce the stress shielding effect as an implant with good biomechanical compatibility. Analysis of the fracture path and morphology after fracture toughness tests indicated that the Zn–Mg/Mg–Zn–HAp laminated composites exhibited significant capacity to prevent crack propagation, improving the fracture toughness. In vitro degradation experiments showed that the design of the laminated structure can provide a gradient degradation rate for the material. Furthermore, the laminated composites exhibited excellent biocompatibility and are promising candidates for orthopedic implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zheng YF, Gu XN, Witte F. Biodegradable metals. Mater Sci Eng R Rep. 2014;77:1.

    Google Scholar 

  2. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F. Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci. 2008;12:63.

    CAS  Google Scholar 

  3. Niinomi M, Nakai M, Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888.

    CAS  Google Scholar 

  4. Atrens A, Song GL, Liu M, Shi Z, Cao F. Review of recent developments in the field of magnesium corrosion. Adv Eng Mater. 2015;17:400.

    CAS  Google Scholar 

  5. Atrens A, Song GL, Cao F, Shi Z, Bowen PK. Advances in Mg corrosion and research suggestions. J Magnes Alloys. 2013;1:177.

    CAS  Google Scholar 

  6. Atrens A, Liu M, Zainal Abidin NI. Corrosion mechanism applicable to biodegradable magnesium implants. Mater Sci Eng B. 2011;176:1609.

    CAS  Google Scholar 

  7. Purnama A, Hermawan H, Couet J, Mantovani D. Assessing the biocompatibility of degradable metallic materials: state-of-the-art and focus on the potential of genetic regulation. Acta Biomater. 2010;6:1800.

    CAS  Google Scholar 

  8. Song GL, Atrens A. Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater. 2003;5:837.

    CAS  Google Scholar 

  9. Zhang S, Zhang X, Zhao C, Jia N, Li YS, Chao Y, Xie HR, Tao Y, Zhang YH, He Y, Jiang Y, Bian Y. Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 2010;6(2):626.

    CAS  Google Scholar 

  10. Zhang E, Xu L, Yu G, Pan F, Yang K. In vivo evaluation of biodegradable magnesium alloy bone implant in the first 6 months implantation. J Biomed Mater Res A. 2010;90(3):882.

    Google Scholar 

  11. Cai S, Lei T, Li N, Feng F. Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys. Mater Sci Eng C. 2012;32:2570.

    CAS  Google Scholar 

  12. Seitz JM, Durisin M, Goldman J, Drelich JW. Recent advances in biodegradable metals for medical sutures: a critical review. Adv Healthc Mater. 2015;2015(4):1915.

    Google Scholar 

  13. Bowen PK, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater. 2013;2013(25):2577.

    Google Scholar 

  14. Gong H, Wang K, Strich R, Zhou JG. In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn–Mg alloy. J Biomed Mater Res B Appl Biomater. 2015;103(8):1632.

    CAS  Google Scholar 

  15. Murni NS, Dambatta MS, Yeap SK, Froemming GRA, Hermawan H. Cytotoxicity evaluation of biodegradable Zn–3Mg alloy toward normal human osteoblast cells. Mater Sci Eng C. 2015;49:560.

    CAS  Google Scholar 

  16. Vojtěch D, Kubásek J, Šerák J, Novák P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011;7:3515.

    Google Scholar 

  17. Cheng J, Liu B, Wu YH, Zheng YF. Comparative in vitro study on pure metals (Fe, Mn, Mg, Zn and W) as biodegradable metals. J Mater Sci Technol. 2013;29:619.

    CAS  Google Scholar 

  18. Li T, Zhang H, He Y, Wen N, Wang X. Microstructure, mechanical properties and in vitro degradation behavior of a novel biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. J Mater Sci Technol. 2015;31:744.

    Google Scholar 

  19. Staiger MP, Pietak AM, Huadmai J, Dias G. Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials. 2006;27(9):1728.

    CAS  Google Scholar 

  20. Zhou W, Shen T, Aung NN. Effect of heat treatment on corrosion behaviour of magnesium alloy AZ91D in simulated body fluid. Corros Sci. 2010;52(3):1035.

    CAS  Google Scholar 

  21. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10B:3.

    Google Scholar 

  22. Krause A, Bormann D, Krause C, Bach FW, Windhagen H, Lindenberg AM. Degradation behaviour and mechanical properties of magnesium implants in rabbit tibiae. J Mater Sci. 2010;2010(45):624.

    Google Scholar 

  23. Li Nan, Zheng Yufeng. Novel magnesium alloys developed for biomedical application: a review. J Mater Sci Technol. 2013;29:489.

    CAS  Google Scholar 

  24. Chen YJ, Xu ZG, Smith C, Sankar J. Recent advances on the development of magnesium alloys for biodegradable implants. Acta Biomater. 2014;10:4561.

    CAS  Google Scholar 

  25. Liu Y-H, Yan L-M, Hou X-H, Huang D-N, Zhang J-B, Shen J. Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes. Rare Met. 2018;37(5):381.

    CAS  Google Scholar 

  26. Wen ZH, Wu CJ, Dai CS, Yang FX. Corrosion behaviors of Mg and its alloys with different Al contents in a modified simulated body fluid. J Alloy Compd. 2009;488:392.

    CAS  Google Scholar 

  27. Wang J-L, Wan Y, Ma Z-J, Guo Y-C, Yang Z, Wang P, Li J-P. Glass-forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.

    CAS  Google Scholar 

  28. Hornberger H, Virtanen S, Boccaccini AR. Biomedical coatings on magnesium alloys—a review. Acta Biomater. 2012;8:2442.

    CAS  Google Scholar 

  29. Kubásek J, Vojtěch D. Zn-based alloys as an alternative biodegradable materials. Metal. 2012;5:23.

    Google Scholar 

  30. Yao C, Wang Z, Tay SL, Zhua T, Gao W. Effects of Mg on microstructure and corrosion properties of Zn–Mg alloy. J Alloy Compd. 2014;602(5):101.

    CAS  Google Scholar 

  31. Wang X, Lu HM, Li X, Zheng YF. Effect of cooling rate and composition on microstructures and properties of Zn–Mg alloys. Trans Nonferrous Met Soc. 2007;17:122.

    Google Scholar 

  32. Guo H, Khor KA, Boey YC, Miao X. Laminated and functionally graded hydroxyapatite/yttria stabilized tetragonal zirconia composites fabricated by spark plasma sintering. Biomaterials. 2003;24(4):667.

    CAS  Google Scholar 

  33. Cheng LX, Cui ZQ, Guo PS. Microstructures and mechanical properties of biodegradable magnesium-zinc alloy fabricated by spark plasma sintering. Rare Metal Mat Eng. 2017;46(11):3518.

    CAS  Google Scholar 

  34. Zhang E, Yin D, Xu L, Yang L, Yang K. Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application. Mater Sci Eng C. 2009;29:987.

    CAS  Google Scholar 

  35. Okamoto H. Supplemental literature review of binary phase diagrams: Cs–In, Cs–K, Cs–Rb, Eu–In, Ho–Mn, K–Rb, Li–Mg, Mg–Nd, Mg–Zn, Mn–Sm, O–Sb, and Si–Sr. J Phase Equilib Diffus. 2013;34:251.

    CAS  Google Scholar 

  36. Sequeira CAC, Amaral L. Role of Kirkendall effect in diffusion processes in solids. Trans Nonferrous Met Soc. 2014;24:1.

    CAS  Google Scholar 

  37. Hodgskinson R, Currey JD, Evans GP. Hardness, an indicator of the mechanical competence of cancellous bone. J Orthop Res. 1989;7(5):754.

    CAS  Google Scholar 

  38. Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg. 2003;12:35.

    Google Scholar 

  39. Mutoh Y, Korda AA, Miyashita Y, Sadasue T. Stress shielding and fatigue crack growth resistance in ferritic–pearlitic steel. Mater Sci Eng A. 2007;S468–470:114.

    Google Scholar 

  40. Thamaraiselvi TV, Rajeswari S. Biological evaluation of bioceramic materials—a review. J Trends Biomater Art Organs. 2004;2004(19):9.

    Google Scholar 

  41. Queyreau Sylvain, Monnet Ghiath, Devincre Benoit. Orowan strengthening and forest hardening superposition examined by dislocation dynamics simulations. Acta Mater. 2010;58:5586.

    CAS  Google Scholar 

  42. Jamesh MI, Wu G, Zhao Y, Mckenzie DR, Bilek MMM, Chu PK. Electrochemical corrosion behavior of biodegradable Mg–Y–RE and Mg–Zn–Zr alloys in Ringer’s solution and simulated body fluid. Corros Sci. 2015;91:160.

    CAS  Google Scholar 

  43. Kubásek J, Vojtěch D, Jablonská E, Pospíšilová I, Lipov J, Ruml T. Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn–Mg alloys. Mater Sci Eng C. 2016;58:24.

    Google Scholar 

  44. Rosalbino F, Angelini E, Macciò D, Saccone A, Delfino S. Application of EIS to assess the effect of rare earths small addition on the corrosion behaviour of Zn–5% Al (Galfan) alloy in neutral aerated sodium chloride solution. Electrochim Acta. 2009;54(4):1204.

    CAS  Google Scholar 

  45. Kraus T, Stefan F, Fischerauer Peter J, Uggowitzer Annelie M, Weinberg S. Magnesium alloys for temporary implants in osteosynthesis: In vivo studies of their degradation and interaction with bone. Acta Biomater. 2012;8(3):1230.

    CAS  Google Scholar 

  46. Khalajabadi SZ, Izman S, Marvibaigi M. The effect of MgO on the biodegradation, physical properties and biocompatibility of a Mg/HA/MgO nanocomposite manufactured by powder metallurgy method. J Alloy Compd. 2016;655:266.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51305292) and the Natural Science Foundation of Shanxi Province (No. 201801D121089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Qin Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YK., Cui, ZQ., Gong, DQ. et al. Microstructure, fracture behavior, in vitro corrosion resistance, and cytotoxicity of Zn–Mg/Mg–Zn–HAp laminated composites produced by spark plasma sintering. Rare Met. 40, 939–951 (2021). https://doi.org/10.1007/s12598-019-01361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01361-9

Keywords

Navigation