Skip to main content
Log in

CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Three Pd/CeO2 catalysts were, respectively, prepared by reduction–deposition and impregnation method (IMP) to investigate the effect of chemical state of Pd on CO oxidation. Two kinds of surface Pd species, namely PdO and Pdδ+ (2 < δ ≤ 4) in PdxCe1−xO2, were identified in all Pd/CeO2 samples although their relative ratios in each sample were different. Surface PdxCe1−xO2 species were found to be very active for CO oxidation, and it could act as a channel by which active oxygen species can be transferred from CeO2 to Pd species for CO oxidation. Our results reveal that the preparation method can severely influence the chemical state of Pd which can further determine the activity for CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fan C, Tang X, Wang L, Wang HF, Zhan WC, Guo Y. Performance of AgIr/MCM-41 catalysts for CO oxidation. Chin J Rare Met. 2019;43(7):686.

    Google Scholar 

  2. Xu L, Pu C, Wang L, Guo Y, Guo YL, Lu GZ. Effect of Calcination temperature on Meso-Pd/Fe(OH)x for CO oxidation at low temperature. Chin J Rare Met. 2018;42(2):161.

    Article  Google Scholar 

  3. Westerholm R, Christensen A, Rosén Å. Regulated and unregulated exhaust emissions from two three-way catalyst equipped gasoline fuelled vehicles. Atmos Environ. 1996;30(20):3529.

    Article  CAS  Google Scholar 

  4. Ivanova A, Slavinskaya E, Gulyaev R, Zaikovskii V, Stonkus O, Danilova I, Plyasova L, Polukhina I, Boronin A. Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl Catal B. 2010;97(1–2):57.

    Article  CAS  Google Scholar 

  5. Gaudet JR, de la Riva A, Peterson EJ, Bolin T, Datye AK. Improved low-temperature CO oxidation performance of Pd supported on La-stabilized alumina. ACS Catal. 2013;3(5):846.

    Article  CAS  Google Scholar 

  6. Arnby K, Törncrona A, Andersson B, Skoglundh M. Investigation of Pt/γ-Al2O3 catalysts with locally high Pt concentrations for oxidation of CO at low temperatures. J Catal. 2004;221(1):252.

    Article  CAS  Google Scholar 

  7. Zhang Y, Cai Y, Guo Y, Wang H, Wang L, Lou Y, Wang Y. The effects of the Pd chemical state on the activity of Pd/Al2O3 catalysts in CO oxidation. Catal Sci Technol. 2014;4(11):3973.

    Article  CAS  Google Scholar 

  8. Chen Z, Cao FX, Gao W, Dong QC, Qu YQ. Uniform small metal nanoparticles anchored on CeO2 nanorods driven by electroless chemical deposition. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01266-7.

    Article  Google Scholar 

  9. Qiao B, Liu L, Zhang J, Deng Y. Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: from gold to palladium. J Catal. 2009;261(2):241.

    Article  CAS  Google Scholar 

  10. Sergeant GA, Bartlett AFF. The poisoning of palladium catalyst for the reaction between hydrogen and oxygen. J Appl Chem. 1955;5(5):208.

    Article  CAS  Google Scholar 

  11. Suchorski Y, Kozlov SM, Bespalov I, Datler M, Vogel D, Budinska Z. The role of metal/oxide interfaces for long-range metal particle activation during CO oxidation. Nat Mater. 2018;17(6):519.

    Article  CAS  Google Scholar 

  12. Migani A, Vayssilov GN, Bromley ST, Illas F, Neyman KM. Greatly facilitated oxygen vacancy formation in ceria nanocrystallites. Chem Commun. 2010;46(32):5936.

    Article  CAS  Google Scholar 

  13. Cargnello M, Doan-Nguyen VV, Gordon TR, Diaz RE, Stach EA, Gorte RJ, Rupprechter G. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science. 2013;341(6147):771.

    Article  CAS  Google Scholar 

  14. Nolan M, Fearon JE, Watson GW. Oxygen vacancy formation and migration in ceria. Solid State Ionics. 2006;177(35–36):3069.

    Article  CAS  Google Scholar 

  15. Zhao R, Wang Y, Guo Y, Guo Y, Liu X, Zhang Z, Wang Y, Zhan W, Lu G. A novel Ce/AlPO5 catalyst for solvent-free liquid phase oxidation of cyclohexane by oxygen. Green Chem. 2006;8(5):459.

    Article  CAS  Google Scholar 

  16. Huang H, Dai Q, Wang X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl Catal B. 2014;158:96.

    Article  Google Scholar 

  17. Dai Q, Wang W, Wang X, Lu G. Sandwich-structured CeO2@ ZSM-5 hybrid composites for catalytic oxidation of 1, 2-dichloroethane: an integrated solution to coking and chlorine poisoning deactivation. Appl Catal B. 2017;203:31.

    Article  CAS  Google Scholar 

  18. Cargnello M, Jaén JD, Garrido JH, Bakhmutsky K, Montini T, Gámez JC, Gorte RJ, Fornasiero P. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science. 2012;337(6095):713.

    Article  CAS  Google Scholar 

  19. Gulyaev R, Stadnichenko A, Slavinskaya E, Ivanova A, Koscheev S, Boronin A. In situ preparation and investigation of Pd/CeO2 catalysts for the low-temperature oxidation of CO. Appl Catal A. 2012;439:41.

    Article  Google Scholar 

  20. Du C, Guo Y, Guo Y, Gong XQ, Lu G. Polymer-templated synthesis of hollow Pd–CeO2 nanocomposite spheres and their catalytic activity and thermal stability. J Mater Chem A. 2015;3(46):23230.

    Article  CAS  Google Scholar 

  21. Dai Q, Bai S, Lou Y, Wang X, Guo Y, Lu G. Sandwich-like PdO/CeO2 nanosheet@HZSM-5 membrane hybrid composite for methane combustion: self-redispersion, sintering-resistance and oxygen, water-tolerance. Nanoscale. 2016;8(18):9621.

    Article  CAS  Google Scholar 

  22. Feng X, Li W, Liu D, Zhang Z, Duan Y, Zhang Y. Self-assembled Pd@CeO2/γ-Al2O3 catalysts with enhanced activity for catalytic methane combustion. Small. 2017;13(31):1700941.

    Article  Google Scholar 

  23. Senftle TP, van Duin AC, Janik MJ. Methane activation at the Pd/CeO2 interface. ACS Catal. 2016;7(1):327.

    Article  Google Scholar 

  24. Hu Z, Liu X, Meng D, Guo Y, Guo Y, Lu G. Effect of ceria crystal plane on the physicochemical and catalytic properties of Pd/ceria for CO and propane oxidation. ACS Catal. 2016;6(4):2265.

    Article  CAS  Google Scholar 

  25. Ma J, Lou Y, Cai Y, Zhao Z, Wang L, Zhan W, Guo YL, Guo Y. The relationship between the chemical state of Pd species and the catalytic activity for methane combustion on Pd/CeO2. Catal Sci Technol. 2018;8(10):2567.

    Article  CAS  Google Scholar 

  26. Mai HX, Sun LD, Zhang YW, Si R, Feng W, Zhang HP, Liu HC, Yan CH. Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J Phys Chem B. 2005;109(51):24380.

    Article  CAS  Google Scholar 

  27. Wang R, Dangerfield R. Seed-mediated synthesis of shape-controlled CeO2 nanocrystals. RSC Adv. 2014;4(7):3615.

    Article  CAS  Google Scholar 

  28. Ramade J, Langlois C, Pellarin M, Piccolo L, Lebeault MA, Epicier T, Aouine M, Cottancin E. Tracking the restructuring of oxidized silver–indium nanoparticles under a reducing atmosphere by environmental HRTEM. Nanoscale. 2017;9(36):13563.

    Article  CAS  Google Scholar 

  29. Choi I, Lee HK, Lee GW, Kim J, Joo JB. Inorganic shell nanostructures to enhance performance and stability of metal nanoparticles in catalytic applications. Rare Met. 2019. https://doi.org/10.1007/s12598-019-01203-8.

    Article  Google Scholar 

  30. Fernández-Garcıa M, Martınez-Arias A, Iglesias-Juez A, Hungrıa A, Anderson J, Conesa J, Soria J. CO oxidation as a test reaction for strong metal–support interaction in nanostructured Pd/FeOx powder catalysts. Appl Catal A. 2015;502:8.

    Article  Google Scholar 

  31. Fernández-Garcıa M, Martınez-Arias A, Iglesias-Juez A, Hungrıa A, Anderson J, Conesa J, Soria J. New Pd/CexZr1−xO2/Al2O3 three-way catalysts prepared by microemulsion: Part 1. Characterization and catalytic behavior for CO oxidation. Appl Catal, B. 2001;31(1): 39.

  32. Martınez-Arias A, Fernández-Garcıa M, Iglesias-Juez A, Hungrıa A, Anderson J, Conesa J, Soria J. New Pd/ CexZr1−xO2/Al2O3 three-way catalysts prepared by microemulsion: Part 2. In situ analysis of CO oxidation and NO reduction under stoichiometric CO+NO+O2. Appl Catal, B. 2001;31(1): 51.

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2016YFC0204300) and the National Natural Science Foundation of China (Nos. 21171055 and 21571061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Feng Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, GF., Ma, J., Bai, S. et al. CO catalytic oxidation over Pd/CeO2 with different chemical states of Pd. Rare Met. 39, 800–805 (2020). https://doi.org/10.1007/s12598-019-01347-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01347-7

Keywords

Navigation