Skip to main content
Log in

Highly precise Ti/Pt/Cr/Au thin-film temperature sensor embedded in a microfluidic device

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A multilayer (Ti/Pt/Cr/Au) resistive temperature sensor was proposed and investigated to precisely measure the temperature characteristic in microfluidic devices. The Ti/Pt/Cr/Au sensor was fabricated by direct current (DC) sputtering, vacuum evaporation and liftoff process. The thermal annealing test was conducted in the temperature range of 200–800 °C for obtaining an appropriate property of the multilayer. Based on the experimental results, 400 °C was selected as the experimental annealing temperature for the Ti/Pt/Cr/Au layer. The redistribution of structural imperfections and recrystallization promote the density and adhesion of multilayer during the annealing process. With the annealing temperature rising, the annealing process leads to through-thickness migration of chromium and partial depletion of the adhesive layer. The Ti also diffuses into the Pt, which makes the interface disappear. Nevertheless, the layer remains continuous. The temperature coefficient of resistance (TCR) of the sensors was investigated through the microfluidic testing system. The excellent stability and sensitivity of the Ti/Pt/Cr/Au thin-film temperature sensor are verified. Furthermore, the capability of the Ti/Pt/Cr/Au thin-film temperature sensor detecting the sudden temperature change caused by bubble effect is very meaningful to the microfluidic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lao AIK, Lee TMH, Hsing IM, Ip NY. Precise temperature control of microfluidic chamber for gas and liquid phase reactions. Sens Actuators a Phys. 2000;84(1–2):11.

    Article  CAS  Google Scholar 

  2. Ekkels P, Rottenberg X, Puers R, Tilmans HAC. Evaluation of platinum as a structural thin film material for RF-MEMS devices. J Micromech Microeng. 2009;19(6):065010.

    Article  Google Scholar 

  3. Kreider KG, Ripple DC, Kimes WA. Thin-film resistance thermometers on silicon wafers. Meas Sci Technol. 2009;20(4):045206.

    Article  Google Scholar 

  4. Deng S, Wang P, Liu S, Zhao T, Xu S, Guo M, Yu X. A novel microfluidic flow rate detection method based on surface plasmon resonance temperature imaging. Sensors (Basel). 2016;16(7):964.

    Article  Google Scholar 

  5. Ryu S, Yoo I, Song S, Yoon B, Kim JM. A thermoresponsive fluorogenic conjugated polymer for a temperature sensor in microfluidic devices. J Am Chem Soc. 2009;131(11):3800.

    Article  CAS  Google Scholar 

  6. Wong D, Yesiloz G, Boybay MS, Ren CL. Microwave temperature measurement in microfluidic devices. Lab Chip. 2016;16(12):2192.

    Article  CAS  Google Scholar 

  7. Courbat J, Briand D, de Rooij NF. Reliability improvement of suspended platinum-based micro-heating elements. Sens Actuators A Phys. 2008;142(1):284.

    Article  CAS  Google Scholar 

  8. Frankel DJ, Moulzolf SC, da Cunha MP, Lad RJ. Influence of composition and multilayer architecture on electrical conductivity of high temperature Pt-alloy films. Surf Coat Technol. 2015;284(1):215.

    Article  CAS  Google Scholar 

  9. Xia Y, Xiong J, Zhang F, Xue Y, Wang L, Guo P, Xu P, Zhao X, Tao B. Morphology evolvement of CeO2 cap layer for coated conductors. Appl Surf Sci. 2012;263(1):508.

    Article  CAS  Google Scholar 

  10. Xiong J, Chen Y, Qiu Y, Tao B, Qin W, Cui X, Tang J, Li Y. A novel process for CeO2 single buffer layer on biaxially textured metal substrates in YBCO coated conductors. Supercond Sci Technol. 2006;19(10):1068.

    Article  CAS  Google Scholar 

  11. Xiong J, Matias V, Wang H, Zhai JY, Maiorov B, Trugman D, Tao BW, Li YR, Jia QX. Much simplified ion-beam assisted deposition-TiN template for high-performance coated conductors. J Appl Phys. 2010;108(8):083903.

    Article  Google Scholar 

  12. Xiong J, Tao BW, Qin WF, Tang JL, Han X, Li YR. Reel-to-reel continuous simultaneous double-sided deposition of highly textured CeO2 templates for YBa2Cu3O7−δ coated conductors. Supercond Sci Technol. 2008;21(2):025016.

    Article  Google Scholar 

  13. Momeni MM. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes. Rare Met. 2017;36(11):865.

    Article  CAS  Google Scholar 

  14. Yang C, He YY, Chu JW, Xue Y, Zhang F, Hui W, Tao BW, Xiong J. Tailoring surface roughness of LaMnO3 buffer layers for YBCO-coated conductors. Rare Met. 2015;34(12):859.

    Article  CAS  Google Scholar 

  15. Yang C, Xia Y, Xue Y, Zhang F, Tao B, Xiong J. The effects of grain boundaries on the current transport properties in YBCO-coated conductors. Nanoscale Res Lett. 2015;10(1):416.

    Article  Google Scholar 

  16. Schmid U, Seidel H. Influence of thermal annealing on the resistivity of titanium/platinum thin films. J Vac Sci Technol A Vac Surf Films. 2006;24(6):2139.

    Article  CAS  Google Scholar 

  17. Resnik D, Vrtačnik D, Možek M, Pečar B, Amon S. Experimental study of heat-treated thin film Ti/Pt heater and temperature sensor properties on a Si microfluidic platform. J Micromech Microeng. 2011;21(2):025025.

    Article  Google Scholar 

  18. Ebadian MA, Lin CX. A review of high-heat-flux heat removal technologies. J Heat Transf. 2011;133(11):110801.

    Article  Google Scholar 

  19. Hoera C, Ohla S, Shu Z, Beckert E, Nagl S, Belder D. An integrated microfluidic chip enabling control and spatially resolved monitoring of temperature in micro flow reactors. Anal Bioanal Chem. 2015;407(2):387.

    Article  CAS  Google Scholar 

  20. Wang B, Ho J, Fei J, Gonzalez RL Jr, Lin Q. A microfluidic approach for investigating the temperature dependence of biomolecular activity with single-molecule resolution. Lab Chip. 2011;11(2):274.

    Article  Google Scholar 

  21. Kim M, Choi W, Lim H, Yang S. Integrated microfluidic-based sensor module for real-time measurement of temperature, conductivity, and salinity to monitor reverse osmosis. Desalination. 2013;317(1):166.

    Article  CAS  Google Scholar 

  22. Bogojevic D, Sefiane K, Duursma G, Walton AJ. Bubble dynamics and flow boiling instabilities in microchannels. Int J Heat Mass Transf. 2013;58(1–2):663.

    Article  Google Scholar 

  23. Pattekar AV, Kothare MV. A microreactor for hydrogen production in micro fuel cell applications. J Microelectromech Syst. 2004;13(1):7.

    Article  CAS  Google Scholar 

  24. Kandlikar SG, Grande WJ. Evolution of microchannel flow passages-thermohydraulic performance and fabrication technology. Heat Transf Eng. 2003;24(1):3.

    Article  CAS  Google Scholar 

  25. Resnik D, Kovač J, Vrtačnik D, Godec M, Pečar B, Možek M. Microstructural and electrical properties of heat treated resistive Ti/Pt thin layers. Thin Solid Films. 2017;639(1):64.

    Article  CAS  Google Scholar 

  26. Li C, Liu XZ, Peng B, Shu L, Li YR. AlN-based surface acoustic wave resonators on platinum bottom electrodes for high-temperature sensing applications. Rare Met. 2016;35(5):408.

    Article  Google Scholar 

  27. Kozłowska A, Łapka P, Seredyński M, Teodorczyk M, Dąbrowska-Tumańska E. Experimental study and numerical modeling of micro-channel cooler with micro-pipes for high-power diode laser arrays. Appl Therm Eng. 2015;91(1):279.

    Article  Google Scholar 

  28. Moody NR, Adams DP, Medlin D, Headley T, Yang N, Volinsky A. Effects of diffusion on interfacial fracture of gold-chromium hybrid microcircuit films. Int J Fract. 2003;119(4–2):407.

    Article  Google Scholar 

  29. Yi F, Osborn W, Betz J, LaVan DA. Interactions of adhesion materials and annealing environment on resistance and stability of MEMS platinum heaters and temperature sensors. J Microelectromech Syst. 2015;24(4):1185.

    Article  CAS  Google Scholar 

  30. Imanaka Y. Reaction of Ti, Ti/Ni and Ti/Pt thin flms on AlN substrates. Bethlehem: Lehigh University; 1994. 272.

    Google Scholar 

  31. Wang K, Yao K, Chua SJ. Titanium diffusion and residual stress of platinum thin films on Ti/SiO2/Si substrate. J Appl Phys. 2005;98(1):013538.

    Article  Google Scholar 

  32. Bíró F, Hajnal Z, Dücső C, Bársony I. The critical impact of temperature gradients on Pt filament failure. Microelectron Reliab. 2017;78(6):118.

    Article  Google Scholar 

  33. Wang T, Wang J, He J, Wu C, Luo W, Shuai Y, Zhang W, Chen X, Zhang J, Lin J. A comprehensive study of a micro-channel heat sink using integrated thin-film temperature sensors. Sensors (Basel). 2018;18(1):299.

    Article  Google Scholar 

  34. Wang T, Wang J, He J, Wu C, Luo W, Shuai Y, Zhang W, Lee C. Investigation of the temperature fluctuation of single-phase fluid based microchannel heat sink. Sensors (Basel). 2018;18(5):1498.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51602039) and the Central University Support Project (No. ZYGX2016J051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JJ., Wang, T., Wu, CG. et al. Highly precise Ti/Pt/Cr/Au thin-film temperature sensor embedded in a microfluidic device. Rare Met. 40, 195–201 (2021). https://doi.org/10.1007/s12598-019-01301-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01301-7

Keywords

Navigation