Skip to main content
Log in

Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

La2Ce2O7 (LCO) is a promising candidate for thermal barrier coatings (TBCs) due to that it provides better thermal insulation than yttria-stabilized zirconia (YSZ) does. In this work, a TBC LCO was produced by solution precursor plasma spraying (SPPS). After the solution precursors were prepared and the spraying parameters were optimized, the thermophysical properties and thermal shock performance of the coatings were tested. It was found that the SPPS coating with segmentation crack density of 6 mm−1 had the porosities of about 33.5% at spray distances of 35 mm. The thermal conductivity of the SPPS coatings is 0.50–0.75 W·m−1·K−1, much lower than that of the atmospheric plasma spraying (APS) coatings (0.85–1.25 W·m−1·K−1). The thermal shock performance of the SPPS coatings reached 60 cycles, much better than the APS coatings. This improvement is due to the segmentation cracks in the coatings, which can improve strain tolerance and effectively relieve internal stress. This study provides reference significance for further research on thermal barrier coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Teixeira V, Andritschky M, Gruhn H, Malléner W, Buchkremer HP, Stöver D. Failure of physical vapor deposition/plasma-sprayed thermal barrier coatings during thermal cycling. Rare Met. 2000;9(2):191.

    CAS  Google Scholar 

  2. Clarke DR, Phillpot SR. Thermal barrier coating materials. Mater Today. 2005;8(6):22.

    Article  CAS  Google Scholar 

  3. Krogstad JA, Leckie RM, Krämer S, Cairney JM, Lipkin DM, Johnson CA, Levi CG. Phase evolution upon aging of air plasma sprayed t’-Zirconia coatings: I-microstructure evolution. J Am Ceram Soc. 2013;96(1):299.

    Article  CAS  Google Scholar 

  4. Padture NP, Gell M, Jordan EH. Thermal barrier coatings for gas-turbine engine applications. Science. 2002;296(5566):280.

    Article  CAS  Google Scholar 

  5. Cao XQ, Vassen R, Fischer W, Tietz F, Jungen W, Stover D. Lanthanum–cerium oxide as a thermal barrier-coating material for high-temperature applications. Adv Mater. 2003;15(17):1438.

    Article  CAS  Google Scholar 

  6. Wang Y, Li MX, Suo HL. Mechanical properties of YSZ thermal barrier coatings with segmented structure. Surf Eng. 2012;28(5):329.

    Article  Google Scholar 

  7. Nelson WA, Orenstein RM. TBC experience in land-based gas turbines. J Therm Spray Technol. 1997;6(2):176.

    Article  CAS  Google Scholar 

  8. Ma W, Hong HB, Gong SK, Dong HY. Lanthanum-cerium oxide thermal barrier coatings prepared by atmospheric plasma spraying. J Inorgan Mater. 2009;24(5):983.

    Article  CAS  Google Scholar 

  9. Ganvir A, Curry N, Govindarajan S, Markocson N. Characterization of thermal barrier coatings produced by various thermal spray techniques using solid powder, suspension, and solution precursor feedstock material. Int J Appl Ceram Technol. 2016;13(2):324.

    Article  CAS  Google Scholar 

  10. Markocsan N, Gupta M, Joshi S, Nylen P. Liquid feedstock plasma spraying: an emerging process for advanced thermal barrier coatings. J Therm Spray Technol. 2017;26(6):1104.

    Article  CAS  Google Scholar 

  11. Wang Y, Guo HB, Gong SK. Thermal shock resistance and mechanical properties of La2Ce2O7 thermal barrier coatings with segmented structure. Ceram Int. 2009;35(7):2639.

    Article  CAS  Google Scholar 

  12. Khan M, Hu NN, Lan ZH, Wang YZ, Yi Z. Influence of solution-precursor plasma spray (SPPS) processing parameters on the mechanical and thermodynamic properties of 8 YSZ. Ceram Int. 2018;44(7):7794.

    Article  CAS  Google Scholar 

  13. Chen J, Jordan EH, Harris AB, Gell M, Roth J. Double-layer gadolinium zirconate/yttria-stabilized zirconia thermal barrier coatings deposited by the solution precursor plasma spray process. J Therm Spray Technol. 2015;24(6):895.

    Article  Google Scholar 

  14. Gell M, Wang JW, Kumar R, Roth J, Chen J, Jordan EH. Higher temperature thermal barrier coatings with the combined use of yttrium aluminum garnet and the solution precursor plasma spray process. J Therm Spray Technol. 2018;27(4):543.

    Article  CAS  Google Scholar 

  15. Virendra S, Robert D, Sudipta S. Effect of processing parameters on cerium oxide coating deposition in solution precursor plasma spray. J Am Ceram Soc. 2013;96(8):2437.

    Article  Google Scholar 

  16. Kindole D, Anyadiegwu I, Ando Y, Noda Y, Nishiyama H, Uehara S, Nakajima T, Solonenko OP, Smirnov AV, Golovin AA. Rapid deposition of photocatalytically enhanced TiO2 film by atmospheric SPPS using Ar/N2-vortex plasma jet. Mater Trans. 2018;59(3):462.

    Article  CAS  Google Scholar 

  17. Li XH, Ma W, Wen J, Bai Y, Sun L, Chen BD, Dong HY, Shuang YC. Preparation of SrZrO3 thermal barrier coating by solution precursor plasma spray. J Therm Spray Technol. 2017;26(3):371.

    Article  CAS  Google Scholar 

  18. Xie LD, Jordan EH, Padture NP, Gell M. Phase and microstructural stability of solution precursor plasma sprayed thermal barrier coatings. Mater Sci Eng, A. 2004;381(1):189.

    Article  Google Scholar 

  19. Wang R, Duan JH, Ye FX. Effect of spraying parameters on the crystallinity and microstructure of solution precursor plasma sprayed coatings. J Alloy Compd. 2018;766(25):886.

    Article  CAS  Google Scholar 

  20. Guo HB, Wang Y, Wang L, Gong SK. Thermo-physical properties and thermal shock resistance of segmented La2Ce2O7/YSZ thermal barrier coatings. J Therm Spray Technol. 2009;18(4):665.

    Article  CAS  Google Scholar 

  21. Liang B, Ding CX. Microstructure of nanostructure zirconia coating and its thermal shock resistance. J Inorgan Mater. 2006;21(1):250.

    CAS  Google Scholar 

  22. Liu Q, Hu YF, Xiong JJ. Experimental study on porosity measurement of graphite porous material. Lubr Eng. 2010;25(10):99.

    Google Scholar 

  23. Liu PS. Determining methods for porosity of porous materials. Titan Ind Prog. 2005;22(6):34.

    CAS  Google Scholar 

  24. Kamseu E, Ngouloure ZNM, Ali BN, Zekeng S, Meloa UC, Rossignol S, Leonelli C. Cumulative pore volume, pore size distribution and phases percolation in porous inorganic polymer composites: relation microstructure and effective thermal conductivity. Energy Build. 2015;88(1):45.

    Article  Google Scholar 

  25. Rätzer-Scheibe HJ, Schulz U. The effects of heat treatment and gas atmosphere on the thermal conductivity of APS and EB-PVD PYSZ thermal barrier coatings. Surf Coat Technol. 2007;201(18):7880.

    Article  Google Scholar 

  26. Khan M, Hu NN, Lan ZH, Zhang Y, Zeng Y. Influence of solution-precursor plasma spray (SPPS) processing parametersOn the mechanical and thermodynamic properties of 8 YSZ. Ceram Int. 2018;44(7):7794.

    Article  CAS  Google Scholar 

  27. Erich J, Chen J, Jeffrey R, Maurice G. Low thermal conductivity yttria-stabilized zirconia thermal barrier coatings using the solution precursor plasma spray process. J Therm Spray Technol. 2014;23(5):849.

    Article  Google Scholar 

  28. Song XM, Liu ZW, Suhonen T, Varis T, Huang LP, Zheng XB, Zeng Y. Effect of melting state on the thermal shock resistance and thermal conductivity of APS ZrO2-7.5 wt% Y2O3 coatings. Surf Coat Technol. 2015;270(25):132.

    Article  CAS  Google Scholar 

  29. Khan M, Zeng Y, Hu NN, Lan ZH, Wang YZ. Optimizing the structure and properties of Y2O3 stabilized zirconia: an atmospheric plasma spray (APS) and solution precursor plasma spray (SPPS) based comparative study. Ceram Int. 2018;44(15):18135.

    Article  CAS  Google Scholar 

  30. Wang Y, Guo HB, Li ZY, Gong SK. Segmented lanthanum cerium oxide thermal barrier coatings by atmospheric plasma spray. Surf Eng. 2009;25(7):555.

    Article  Google Scholar 

  31. Keyvani A, Saremi M, Heydarzadeh Sohi M, Valefi Z. A comparison on thermomechanical properties of plasma-sprayed conventional and nanostructured YSZ TBC coatings in thermal cycling. J Alloy Compd. 2012;541(15):488.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51571002 and 51401003) and Beijing Municipal Natural Science Foundation (Nos. 2172008 and KZ201310005003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, BB., Wang, Y., Jia, Q. et al. Thermophysical properties of solution precursor plasma-sprayed La2Ce2O7 thermal barrier coatings. Rare Met. 38, 689–694 (2019). https://doi.org/10.1007/s12598-019-01286-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01286-3

Keywords

Navigation