Skip to main content
Log in

Photocatalysis of Cd-doped ZnO synthesized with precipitation method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

ZnO particles doped with 0 mol%–5 mol% Cd dopant were successfully synthesized by a precipitation method. The as-synthesized products were characterized by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), photoluminescence (PL) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM) coupled with an energy-dispersive X-ray (EDX) spectroscopy and transmission electron microscopy (TEM). The precursors showed weight loss at 35–700 °C caused by phase transformation and evaporation processes. The as-synthesized products were specified as hexagonal wurtzite ZnO. The crystallite size of ZnO samples doped with 0 mol%–5 mol% Cd gradually increased with the increase in Cd content. The photocatalytic activities of 0 mol%–5 mol% Cd-doped ZnO samples were evaluated through photodecolorization of methylene blue (MB) under ultraviolet (UV) radiation. In this research, ZnO doped with 3 mol% Cd shows the best photocatalytic activity in degrading of MB molecules as much as 89% within 240 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Zou Y, Li D, Sheng X, Wang L, Yang D. Fabrication of TiO2 nanorod array/semiconductor nanocrystal hybrid structure for photovoltaic applications. Sol Energy. 2012;86(5):1359.

    CAS  Google Scholar 

  2. Wang J, Chen Z, Liu Y, Shek CH, Wu CML, Lai JKL. Heterojunctions and optical properties of ZnO/SnO2 nanocomposites adorned with quantum dots. Sol Energy Mater Sol C. 2014;128:254.

    CAS  Google Scholar 

  3. Mounkachi O, Salmani E, Moussaoui HE, Ez-Zahraouy H, Hamedoun M, Hlil EK, Benyoussef A. Chemical control of superparamagnetic properties of SnO2 diluted magnetic semiconductor. Mater Lett. 2014;134:272.

    CAS  Google Scholar 

  4. Moafi HF, Zanjanchi MA, Shojaie AF. Tungsten-doped ZnO nanocomposite: synthesis, characterization, and highly active photocatalyst toward dye photodegradation. Mater Chem Phys. 2013;139(2–3):856.

    CAS  Google Scholar 

  5. Yakuphanoglu F, Ilican S, Caglar M, Caglar Y. Microstructure and electro-optical properties of sol–gel derived Cd-doped ZnO films. Superlattice Microstruct. 2010;47(6):732.

    CAS  Google Scholar 

  6. Fang L, Zhang B, Li W, Li X, Xin T, Zhang Q. Controllable synthesis of ZnO hierarchical architectures and their photocatalytic property. Superlattice Microstruct. 2014;75:324.

    CAS  Google Scholar 

  7. Sun H, Wang L, Chu D, Ma Z, Wang A, Zheng Y, Wang L. Facile template-free hydrothermal fabrication of ZnO hollow microspheres for gas sensing applications. Ceram Int. 2014;40(10):16465.

    CAS  Google Scholar 

  8. Mallika AN, Reddy AR, Babu KS, Reddy KV. Synthesis and optical characterization of aluminum doped ZnO nanoparticles. Ceram Int. 2014;40(8):12171.

    CAS  Google Scholar 

  9. Verma S, Pandey SK, Gupta M, Mukherjee A. Influence of ion-beam sputtering deposition parameters on highly photosensitive and transparent CdZnO thin films. J Mater Sci. 2014;49(20):6917.

    CAS  Google Scholar 

  10. Zheng BJ, Lian JS, Zhao L, Jiang Q. Structural, optical and electrical properties of Zn1−xCdxO thin films prepared by PLD. Appl Surf Sci. 2011;257(13):5657.

    CAS  Google Scholar 

  11. Zamiri R, Singh B, Bdikin I, Rebelo A, ScottBelsley M, Ferreira JMF. Influence of Mg doping on dielectric and optical properties of ZnO nano-plates prepared by wet chemical method. Solid State Commun. 2014;95:74.

    Google Scholar 

  12. Qu X, Lü S, Jia D, Zhou S, Meng Q. First-principles study of the electronic structure of Al and Sn co-doping ZnO system. Mater Sci Semicond Proc. 2013;16(4):1057.

    CAS  Google Scholar 

  13. Mhamdi A, Mimouni R, Amlouk A, Amlouk M, Belgacem S. Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films. J Alloys Compd. 2014;610:250.

    CAS  Google Scholar 

  14. Bououdina M, Omri K, El-Hilo M, ElAmiri A, Lemine OM, Alyamani A, Hlil EK, Lassri H, ElMir L. Structural and magnetic properties of Mn-doped ZnO nanocrystals. Phys E. 2014;56:107.

    CAS  Google Scholar 

  15. Bahadur N, Srivastava AK, Kumar S, Deepa M, Nag B. Influence of cobalt doping on the crystalline structure, optical and mechanical properties of ZnO thin films. Thin Solid Films. 2010;518(18):5257.

    CAS  Google Scholar 

  16. Karunakaran C, Vijayabalan A, Manikandan G. Photocatalytic and bactericidal activities of hydrothermally synthesized nanocrystalline Cd-doped ZnO. Superlattice Microstruct. 2012;51(3):443.

    CAS  Google Scholar 

  17. Vu TT, Rodil AB, Marbán G, Valdés-Solís T. Nanostructured stainless steel wire mesh-supported CdxZn1−xO: a stable photocatalyst under visible and ultraviolet irradiation. J Environ Chem Eng. 2014;2(3):1612.

    CAS  Google Scholar 

  18. Mahmoud WE, Al-Ghamdi AA, Al-Heniti S, Al-Ameer S. The influence of temperature on the structure of Cd-doped ZnO nanopowders. J Alloys Compd. 2010;491(1–2):742.

    CAS  Google Scholar 

  19. Rahal B, Boudine B, Khantoul AR, Sebais M, Halimi O. Colloidal synthesis of nanostructured pure ZnO and Cd doped ZnO thin films and their characterization. Optik. 2016;127(17):6943.

    CAS  Google Scholar 

  20. Jule LT, Dejene FB, Ali AG, Roro KT, Hegazy A, Allam NK, Shenawy EE. Wide visible emission and narrowing band gap in Cd-doped ZnO nanopowders synthesized via sol–gel route. J Alloys Compd. 2016;687:920.

    CAS  Google Scholar 

  21. Zhai YJ, Li JH, Fang X, Chen XY, Fang F, Chu XY, Wei ZP, Wang XH. Preparation of cadmium-doped zinc oxide nanoflowers with enhanced photocatalytic activity. Mater Sci Semicond Process. 2014;26:225.

    CAS  Google Scholar 

  22. Khodadadi B, Bordbar M, Yeganeh-Faal A. Optical, structural, and photocatalytic properties of Cd-doped ZnO powders prepared via sol-gel method. J Sol-Gel Sci Technol. 2016;77(3):521.

    CAS  Google Scholar 

  23. Jacob AA, Balakrishnan L, Meher SR, Shambavi K, Alex ZC. Synthesis of Zn1−xCdxO nanoparticles by co-precipitation: structural, optical and photodetection analysis. Int J Nanosci. 2018;17:1760015.

    CAS  Google Scholar 

  24. Phuruangrat A, Thongtem S, Thongtem T. Template-free synthesis of neodymium hydroxide nanorods by microwave-assisted hydrothermal process, and of neodymium oxide nanorods by thermal decomposition. Ceram Int. 2012;38(5):4075.

    CAS  Google Scholar 

  25. Dhaouadi H, Chaabane H, Touati F. Mg(OH)2 nanorods synthesized by a facile hydrothermal method in the presence of CTAB. Nano-Micro Lett. 2011;3(3):153.

    CAS  Google Scholar 

  26. Badawy AA, El-Shafey SE, All SAE, El-Shobaky GA. Effect of γ-Irradiation and calcination temperature of nanosized ZnO/TiO2 system on its structural and electrical properties. Adv Chem. 2014. https://doi.org/10.1155/2014/301410.

    Article  Google Scholar 

  27. Long Z, Zhou J, Qiu J, Wang Q, Zhou D, Xu X, Yu X, Wu H, Li Z. Thermally stable photoluminescence and long persistent luminescence of Ca3Ga4O9:Tb3+/Zn2+. J Rare Earth. 2018;36(7):675.

    CAS  Google Scholar 

  28. Wang F, Liu B, Zhang Z, Yuan S. Synthesis and properties of Cd-doped ZnO nanotubes. Phys E. 2009;41(5):879.

    CAS  Google Scholar 

  29. Yao G, Tang Y, Fu Y, Jiang Z, An X, Chen Y, Liu Y. Fabrication of high-quality ZnCdO epilayers and ZnO/ZnCdO heterojunction on sapphire substrates by pulsed laser deposition. Appl Surf Sci. 2015;326:271.

    CAS  Google Scholar 

  30. Rana SB, Singh P, Sharma AK, Carbonari AW, Dogra R. Synthesis and characterization of pure and doped ZnO nanoparticles. J Optoelectron Adv Mater. 2010;12(2):257.

    CAS  Google Scholar 

  31. Wojnarowicz J, Opalinska A, Chudoba T, Gierlotka S, Mukhovskyi R, Pietrzykowska E, Sobczak K, Lojkowski W. Effect of water content in ethylene glycol solvent on the size of ZnO nanoparticles prepared using microwave solvothermal synthesis. J Nanomater. 2016. https://doi.org/10.1155/2016/2789871.

    Article  Google Scholar 

  32. Li G, Zhu X, Tang X, Song W, Yang Z, Dai J, Sun Y, Pan X, Dai S. Doping and annealing effects on ZnO: Cd thin films by sol–gel method. J Alloys Compd. 2011;509(14):4816.

    CAS  Google Scholar 

  33. Thangavel R, Moirangthem RS, Lee WS, Chang YC, Wei PK, Kumar J. Cesium doped and undoped ZnO nanocrystalline thin films: a comparative study of structural and micro-Raman investigation of optical phonons. J Raman Spectrosc. 2010;41(12):1594.

    Google Scholar 

  34. Baghdad R, Kharroubi B, Abdiche A, Bousmaha M, Bezzerrouk MA, Zeinert A, Marssi M, El Zellama K. Mn doped ZnO nanostructured thin films prepared by ultrasonic spray pyrolysis method. Superlattice Microstruct. 2012;52(4):711.

    CAS  Google Scholar 

  35. Shuang D, Wang JB, Zhong XL, Yan HL. Raman scattering and cathodoluminescence properties of flower-like manganese doped ZnO nanorods. Mater Sci Semicond Proc. 2007;10(2–3):97.

    CAS  Google Scholar 

  36. Guo S, Du Z, Dai S. Analysis of Raman modes in Mn-doped ZnO nanocrystals. Phys Status Solidi B. 2009;246(10):2329.

    CAS  Google Scholar 

  37. Phan TL, Sun YK, Vincent R, Cherns D. Optical properties of Mn-doped ZnO nanowires. J Korean Phys Soc. 2008;52(5):1633.

    CAS  Google Scholar 

  38. Hao YM, Lou SY, Zhou SM, Yuan RJ, Zhu GY, Li N. Structural, optical, and magnetic studies of manganese-doped zinc oxide hierarchical microspheres by self-assembly of nanoparticles. Nanoscale Res Lett. 2012;7(1):100.

    Google Scholar 

  39. Ungár T, Tichy G, Gubicza J, Hellmig RJ. Correlation between subgrains and coherently scattering domains. Powder Diffr. 2005;20(4):366.

    Google Scholar 

  40. GencalpIrizalp S, Saklakoglu N. Laser peening of metallic materials. In: Hashmi MSJ, editor. Comprehensive Materials Finishing. Oxford: Elsevier; 2017. 408.

    Google Scholar 

  41. Fageria P, Gangopadhyay S, Pande S. Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 2014;49(48):24962.

    Google Scholar 

  42. Sun XL, Tok AIY, Lim SL, Boey FYC, Kang CW, Ng HW. Combustion-aided suspension plasma spraying of Y2O3 nanoparticles: synthesis and modeling. J Appl Phys. 2008;103(3):034308.

    Google Scholar 

  43. Sui YR, Wu YJ, Song YP, Lv SQ, Yao B, Meng XW, Xiao L. A study on structural formation and optical properties of Zn1−xCdxO thin films synthesized by the DC and RF reactive magnetron co-sputtering. J Alloys Compd. 2016;678:383.

    CAS  Google Scholar 

  44. Geng Y, Li N, Ma J, Sun Z. Preparation, characterization and photocatalytic properties of BiOBr/ZnO composites. J Energy Chem. 2017;26(3):416.

    Google Scholar 

  45. An W, Cui W, Liang Y, Hu J, Liu L. Surface decoration of BiPO4 with BiOBr nanoflakes to build heterostructure photocatalysts with enhanced photocatalytic activity. Appl Surf Sci. 2015;351:1131.

    CAS  Google Scholar 

  46. Ganesh V, Salem GF, Yahia IS, Yakuphanoglu F. Synthesis, optical and photoluminescence properties of Cu-doped ZnO nano-fibers thin films: nonlinear optics. J Electron Mater. 2018;47(3):1798.

    CAS  Google Scholar 

  47. Pandey SK, Awasthi V, Verma S, Mukherjee S. Blue electroluminescence from Sb-ZnO/Cd-ZnO/Ga-ZnO heterojunction diode fabricated by dual ion beam sputtering. Opt Express. 2014;22(25):30983.

    CAS  Google Scholar 

  48. Wang YS, John Thomas P, O’Brien P. Optical properties of ZnO nanocrystals doped with Cd, Mg, Mn, and Fe ions. J Phys Chem B. 2006;110(43):21412.

    CAS  Google Scholar 

  49. Jonjana S, Phuruangrat A, Thongtem S, Wiranwetchayan O, Thongtem T. Preparation and characterization of Ag3VO4/Bi2MoO6 nanocomposites with highly visible-light-induced photocatalytic properties. Mater Lett. 2016;180:93.

    CAS  Google Scholar 

  50. Sunasee S, Wong KT, Lee G, Pichiah S, Ibrahim S, Park C, Kim NC, Yoon Y, Jang M. Titanium dioxide-based sonophotocatalytic mineralization of bisphenol A and its intermediates. Environ Sci Pollut Res. 2017;24(18):15488.

    CAS  Google Scholar 

  51. Bhatia S, Verma N, Bedi RK. Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red—31 dye. Opt Mater. 2016;62:392.

    CAS  Google Scholar 

Download references

Acknowledgements

This word was financially supported by the Chiang Mai University Research Fund, the administration of Materials Science Research Center, Faculty of Science, Chiang Mai University, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Titipun Thongtem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumrongrojthanath, P., Phuruangrat, A., Thongtem, S. et al. Photocatalysis of Cd-doped ZnO synthesized with precipitation method. Rare Met. 40, 537–546 (2021). https://doi.org/10.1007/s12598-019-01283-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01283-6

Keywords

Navigation