Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of Al–B4C composite at elevated temperature strengthened with in situ Al2O3 network

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

This study evaluated the mechanical properties and thermal properties of Al–12 vol%B4C composite at elevated temperature strengthened with in situ Al2O3 network. The composite was fabricated using powder metallurgy (PM) with raw materials of fine atomized aluminum powders, and the associated microstructures were observed. At 350 °C, the composite had ultimate tensile strength of UTS = 137 MPa, yield strength of YS0.2 = 118 MPa, and elongation of ε = 4%. Besides, the mechanical properties of the composite remained unchanged at 350 °C after the long holding periods up to 1000 h. The excellent mechanical properties and thermal stability at 350 °C were secured by in situ am-Al2O3 network that strengthened the grain boundaries. The interfacial de-bonding and brittle cracking of B4C particles were the main fracture mechanisms of the composite. In addition, the influence of sintering temperature and rolling deformation on the microstructures and mechanical properties was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li JL, Wang XD, Wang SH, Zhang XF, Wang SQ, Xiong YC. Morphology and microstructure of nanocrystalline aluminum-based composite powder reinforced with nanometric B4C particles. Chin J Rare Met. 2016;40(6):521.

    Google Scholar 

  2. Soltani S, Khosroshahi RA, Mousavian RT, Jiang ZY, Boostani AF, Brabazon D. Stir casting process for manufacture of Al–SiC composites. Rare Met. 2017;36(7):581.

    Article  CAS  Google Scholar 

  3. Wang DS, Wei SH, Fan JZ, Ma ZL, Nie JH. Microstructure and properties of SiCp/Al–Cu–Mg composites with solution treatment. Chin J Rare Met. 2016;40(2):125.

    CAS  Google Scholar 

  4. Liu GW, Luo WQ, Zhang XZ, Shao HC, Pan TZ, Qiao GJ. Microstructure, mechanical and thermal properties of Ni–P(–SiC) coating on high volume fraction SiCp/Al composite. Rare Met. 2017. https://doi.org/10.1007/s12598-017-0934-5.

    Article  Google Scholar 

  5. Thévenot F. Boron carbide—a comprehensive review. J Eur Ceram Soc. 1990;6(4):205.

    Article  Google Scholar 

  6. Chen XG, Silva MD, Gougeon P, St-Georges L. Microstructure and mechanical properties of friction stir welded AA6063–B4C metal matrix composites. Mater Sci Eng A. 2009;518(1):174.

    Article  Google Scholar 

  7. Zheng JY, Li QL, Liu W, Shu GG. Microstructure evolution of 15 wt% boron carbide/aluminum composites during liquid-stirring process. J Compos Mater. 2016;50(27):3843.

    Article  CAS  Google Scholar 

  8. Chen HS, Wang WX, Li YL, Nie HH, Wu QC. The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS. Mater Des. 2016;94:360.

    Article  CAS  Google Scholar 

  9. Lai J, Zhang Z, Chen XG. The thermal stability of mechanical properties of Al–B4C composites alloyed with Sc and Zr at elevated temperatures. Mater Sci Eng A. 2012;5322012:462.

    Article  Google Scholar 

  10. Machiels A, Lambert R. Handbook of Neutron Absorber Materials for Spent Nuclear Fuel Transportation and Storage Applications. 2009th ed. Palo Alto: EPRI; 2009, 180.

    Google Scholar 

  11. Chen XG, Stgeorges L, Roux M. Mechanical behavior of high boron content Al–B4C metal matrix composites at elevated temperatures. Mater Sci Forum. 2012;706–709:631.

    Article  Google Scholar 

  12. Junaedi H, Ibrahim M, Ammar H, Samuel A, Soliman M, Almajid A. Effect of testing temperature on the strength and fracture behavior of Al–B4C composites. J Compos Mater. 2015;50(20):429.

    Google Scholar 

  13. Kaufman JG. Properties of aluminum alloys: tensile, creep, and fatigue data at high and low temperatures. ASM Int. 1999;23:668.

    Google Scholar 

  14. Zhao D, Tuler FR, Lloyd DJ. Fracture at elevated temperatures in a particle reinforced composite. Acta Mater. 1994;42(7):2525.

    Article  CAS  Google Scholar 

  15. Nie JF, Muddle BC. On the form of the age-hardening response in high strength aluminium alloys. Mater Sci Eng A. 2001;319–321:448.

    Article  Google Scholar 

  16. Wang G, Guo CX, Pang SJ. Erratum to: thermal stability, mechanical properties and corrosion behavior of a Mg–Cu–Ag–Gd metallic glass with Nb addition. Rare Met. 2017;36(4):304.

    Article  CAS  Google Scholar 

  17. Liu K, Chen XG. Development of Al–Mn–Mg 3004 alloy for applications at elevated temperature via dispersoid strengthening. Mater Des. 2015;84:340.

    Article  CAS  Google Scholar 

  18. Booth-Morrison C, Dunand DC, Seidman DN. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 2011;59(18):7029.

    Article  CAS  Google Scholar 

  19. Zhang XL, Xu XJ, Ling ZY, Wu Y, Sun LS, Fan YZ. Optimization of high-strength Al–Zn–Mg–Cu series aluminum alloy with Zr and Sr additions by heat treatment. Chin J Rare Met. 2016;40(9):117.

    Google Scholar 

  20. Poletti C, Balog M, Simancik F, Degischer HP. High-temperature strength of compacted sub-micrometer aluminium powder. Acta Mater. 2010;58:3781.

    Article  CAS  Google Scholar 

  21. Balog M, Krizik P, Nosko M, Hajovska Z, Riglos MVC, Rajner W. Forged HITEMAL: Al-based MMCs strengthened with nanometric thick Al2O3-skeleton. Mater Sci Eng A. 2014;613(34):82.

    Article  CAS  Google Scholar 

  22. Shin SE, Ko YJ, Bae DH. Mechanical and thermal properties of nanocarbon-reinforced aluminum matrix composites at elevated temperatures. Compos Part B Eng. 2016;106:66.

    Article  CAS  Google Scholar 

  23. Ďurišinová K, Ďurišin J, Orolínová M, Ďurišin M. Effect of particle additions on microstructure evolution of aluminum matrix composite. J Alloy Compd. 2012;525(10):137.

    Article  Google Scholar 

  24. Balog M, Simancik F, Krizik P, Nosko M, Rajner W, Walcher M, Qian M. Novel ultrafine-grained aluminum metal matrix composites prepared from fine atomized aluminum powders, In: Light Metals 2014: Proceedings of the Symposia Sponsored by the TMS Aluminum Committee at the TMS 2014 annual meeting & exhibition. New Jersey: Wiley, 2014, 1425.

  25. Balog M, Hu T, Krizik P, Victoria M, Riglos C, Saller BD. On the thermal stability of ultrafine-grained al stabilized by in situ amorphous Al2O3 network. Mater Sci Eng A. 2015;648:61.

    Article  CAS  Google Scholar 

  26. Balog M, Poletti C, Simancik F, Walcher M, Rajner W. The effect of native Al2O3 skin disruption on properties of fine al powder compacts. J Alloy Compd. 2011;509(12):S235.

    Article  CAS  Google Scholar 

  27. Le GM, Godfrey A, Hansen N. Structure and strength of aluminum with sub-micrometer/micrometer grain size prepared by spark plasma sintering. Mater Des. 2013;49:360.

    Article  CAS  Google Scholar 

  28. Llorca J, Martin A, Ruiz J, Elices M. Particulate fracture during deformation. Metall Trans A. 1993;24(7):1575.

    Article  Google Scholar 

  29. Lewandowski JJ, Liu C Jr, Hunt WH. Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite. Mater Sci Eng A. 1989;107(1):241.

    Article  Google Scholar 

  30. Mummery P, Derby B. The influence of microstructure on the fracture behaviour of particulate metal matrix composites. Mater Sci Eng A. 1991;135(121):221.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Shenzhen Engineering Laboratory of Nuclear Materials and Service Safety. The authors thank Mr. Xiang Zeng at Tsinghua University for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-Lin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, SY., Li, QL., Liu, W. et al. Microstructure and mechanical properties of Al–B4C composite at elevated temperature strengthened with in situ Al2O3 network. Rare Met. 39, 671–679 (2020). https://doi.org/10.1007/s12598-019-01279-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01279-2

Keywords

Navigation