Skip to main content

Advertisement

Log in

Synthesis and photoluminescent performance of novel europium (III) carboxylates with heterocyclic ancillary ligands

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Five novel europium(III) complexes with 2-[4-(dibutylamino)-2-hydroxybenzoyl]benzoic acid (DAHB) as primary ligand and bathophenanthroline (batho), 2,2’-bipyridyl (bipy), 5,6-dimethyl-1,10-phenanthroline (dmph), 1,10-phenanthroline (phen) as ancillary ligands were synthesized via solution precipitation method. The structural formulae of synthesized complexes were speculated to be Eu(DABH)3·2H2O (C1), Eu(DABH)3·batho (C2), Eu(DABH)3·bipy (C3), Eu(DABH)3·dmph (C4) and Eu(DABH)3·phen (C5) by elemental analysis, infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (1H-NMR). The photoluminescent properties and thermal stability of the complexes were investigated by photoluminescent spectroscopy and thermogravimetric analysis (TG-DTG), respectively. The Commission Internationale de I’ Eclairage (CIE) color coordinates, Judd–Ofelt intensity parameter (Ω2), total quantum yield, intrinsic quantum efficiency and energy transfer dynamics of complexes were also explored. The excitation spectra of complexes are extended up to visible region. These complexes exhibit characteristic photoemission of Eu3+ metal ion with high color purity in red region attributed to efficient energy transfer from ligand to metal ion. The replacement of water molecules from coordination sphere of europium ion by ancillary ligands results in enhancement of luminescent properties of the C2–C5 complexes, indicating that ancillary ligands act as additional light harvesting centers in sensitization phenomenon. The thermal studies show that these complexes are suitable for meeting the requirement of temperature for fabrication of OLEDs devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Gallardo H, Conte G, Bortoluzzi AJ, Bechtold IH, Pereira A, Quirino WG, Legnani C, Cremona M. Synthesis, structural characterization, and photo and electroluminescence of a novel terbium(III) complex: {tris(acetylacetonatonate)[1,2,5]thiadiazolo[3,4-f][1,10]phenanthroline}terbium(III). Inorg Chim Acta. 2011;365(1):152.

    CAS  Google Scholar 

  2. Wang L, Li B, Zhang L, Li P, Jiang H. An optical anion chemosensor based on a europium complex and its molecular logic. Dyes Pigm. 2013;97(1):26.

    CAS  Google Scholar 

  3. Song X, Wang L, Zheng Q, Liu W. Synthesis, crystal structure and luminescence properties of lanthanide complexes with a new bridging furfurylsalicylamide ligand. Inorg Chim Acta. 2012;391:171.

    CAS  Google Scholar 

  4. Souza AP, Paz FAA, Freire RO, Calos LD, Malta OL, Alves S Jr, de Sa GF. Synthesis, crystal structure, and modelling of a new tetramer complex of europium. J Phys Chem B. 2007;111(31):9228.

    CAS  Google Scholar 

  5. Tsaryuk V, Zolin V, Zhuravlev K, Kudryashova V, Legendziewicz J, Szostak R. Blocking effect of ligand spacer groups on the luminescence excitation of europium aromatic carboxylates. J Alloys Compd. 2008;451(1):153.

    CAS  Google Scholar 

  6. Kuriki K, Koike Y, Okamoto Y. Plastic optical fiber lasers and amlifiers containing lanthanide complexes. Chem Rev. 2002;102(6):2347.

    CAS  Google Scholar 

  7. Rasanen M, Takalo H, Rosenberg J, Makela J, Haapakka K, Kankare J. Study on photophysical properties of Eu(III) complexes with aromatic β-diketones-role of charge transfer states in the energy migration. J Lumin. 2014;146(25):211.

    CAS  Google Scholar 

  8. Jiu HF, Liu GD, Zhang ZJ, Fu YH, Chen JC, Fan T, Zhang LX. Fluorescence enhancement of Tb(III) complex with a new β-diketone ligand by 1,10-phenanthroline. J Rare Earths. 2011;29(8):741.

    CAS  Google Scholar 

  9. Mwaura JK, Mathai MK, Chen C, Papadimitrakopoulos F. Light emitting diodes prepared from terbium-immobilized polyurea chelates. J Macromol Sci A. 2003;40(12):1253.

    Google Scholar 

  10. Whan RE, Crosby GA. Luminescence studies of rare earth complexes: benzoylacetonate and dibenzoylmethide chelates. J Mol Spectrosc. 1962;8(1–6):315.

    CAS  Google Scholar 

  11. Rao CN, Ferraro JR, editors. Spectroscopy in Inorganic Chemistry. New York: Academic Press; 1971. 2.

    Google Scholar 

  12. Lasker IR, Chen TM. Tuning of wavelengths: synthesis and photophysical studies of iridium complexes and their applications in organic light emitting devices. Chem Mater. 2004;16(1):111.

    Google Scholar 

  13. Bao Z, Lovinger AJ, Brown J. New air-stable n-channel organic thin film transistors. J Am Chem Soc. 1998;120(1):207.

    CAS  Google Scholar 

  14. Parra DF, Mucciolo A, Brito HF. Green luminescence system containing a Tb3+-β-diketonate complex doped in the epoxy resin as sensitizer. J Appl Polym Sci. 2004;94(3):865.

    CAS  Google Scholar 

  15. Bala M, Kumar S, Taxak VB, Boora P, Khatkar SP. Terbium(III) complexes sensitized with β-diketone and ancillary ligand: synthesis, elucidation of photoluminescence properties and mechanism. J Mater Sci-Mater Electron. 2016;27(9):9306.

    CAS  Google Scholar 

  16. Feng J, Zhang H. Hybrid materials based on lanthanide organic complexes: a review. Chem Soc Rev. 2013;42(1):387.

    CAS  Google Scholar 

  17. Yang Y, Zhang SY. Study of lanthanide complexes with salicylic acid by photoacoustic and fluorescence spectroscopy, Spectrochim. Acta A. 2004;60(8–9):2065.

    Google Scholar 

  18. Nakayama T, Tsutsui T. Enhancement in 1-D optical resonator devices with organic films. Synth Met. 1997;91(1–3):57.

    CAS  Google Scholar 

  19. Kamino S, Horio Y, Komeda S, Minoura K, Ichikawa H, Horigome J, Tatsumi A, Kaji S, Yamaguchi T, Usami Y, Hirota S, Enomoto S, Fujita Y. A new class of rhodamine luminophores: design, synthesis and aggregation-induced emission enhancement. Chem Commun. 2010;46(47):9013.

    CAS  Google Scholar 

  20. Liu JY, Ren N, Zhang JJ, Zhang CY. Preparation, thermodynamics property and antimicrobial activity of some rare earth (III) complexes with 3-bromo-5-iodobenzoic acid and 1,10-phenanthroline. Thermochim Acta. 2013;570:51.

    CAS  Google Scholar 

  21. Tian L, Ren N, Zhang JJ, Sun SJ, Ye HM, Bai JH, Wang RF. Synthesis, crystal structure, and thermal decomposition kinetic of the complex of dysprosium benzoate with 2,2’-bipyridine. J Chem Eng Data. 2009;54(1):69.

    CAS  Google Scholar 

  22. Devi R, Chahar S, Khatkar SP, Taxak VB, Boora P. Relative study of luminescent properties with Judd-Ofelt characterization in trivalent europium complexes comprising ethyl-(4-fluorobenzoyl) acetate. J Fluoresc. 2017;27(4):1349.

    CAS  Google Scholar 

  23. Yang C, Luo J, Ma J, Lu M, Liang L, Tong B. Synthesis and photoluminescent properties of four novel trinuclear europium complexes based on two tris-β-diketones ligands. Dyes Pigm. 2012;92(1):696.

    CAS  Google Scholar 

  24. Bhacca NS, Selbin J, Wander JD. Nuclear magnetic resonance spectra of 1:1 adducts of 1,10-phenanthroline and α, α′-bipyridyl with tris[2,2,6,6-tetramethylheptane-3,5-dionato] complexes of the lanthanides. J Am Chem Soc. 1972;94(25):8719.

    CAS  Google Scholar 

  25. Utochnikova VV, Solodukhin NN, Aslandukov AN, Marciniak L, Bushmarinov IS, Vashchenko AA, Kuzmina NP. Lanthanide tetrafluorobenzoates as emitters for OLEDs: New approach for host selection. Org Elec. 2017;44:85.

    CAS  Google Scholar 

  26. Shao G, Li Y, Feng K, Gan F, Gong M. Diphenylethyne based β-diketonate europium(III) complexes as red phosphor applied in LED. Sens Actuators B. 2012;173(1):692.

    CAS  Google Scholar 

  27. Wang H, He P, Yan H, Gong M. Synthesis, characteristics and luminescent properties of a new europium(III) organic complex applied in near UV LED. Sens Actuators, B. 2011;156(1):6.

    CAS  Google Scholar 

  28. Gusev AN, Hasegawa M, Shul’gin VF, Nishchymenko G, Linert W. Photophysical studies on ternary mixed ligand europium complexes containing pyridyltriazolylmethane and 1,3-diketonate. Inorg Chim Acta. 2014;414:71.

    CAS  Google Scholar 

  29. Liu S, Su W, Pan R, Zhou X. Red emission of Eu(III) complex based on 1-(7-(tert-butyl)-9-ethyl-9H-carbazol-2-yl)-4,4,4-trifluorobutane-1,3-dione excited by blue light. Chin J Chem Phys. 2012;25(6):697.

    Google Scholar 

  30. Francis B, Ambilli Raj DB, Reddy MLP. Highly efficient luminescent hybrid materials covalently linking with europium(III) complexes via a novel fluorinated β-diketonate ligand: synthesis, characterization and photophysical properties. Dalton Trans. 2010;39(34):8084.

    CAS  Google Scholar 

  31. Wang YB, Zheng XJ, Zhuang WJ, Jin LP. Hydrothermal synthesis and characterization of novel lanthanide 2,2-diphenyldicarboxylate complexes. Eur J Inorg Chem. 2003;2003(7):1355.

    Google Scholar 

  32. Yu J, Deng R, Sun L, Li Z, Zhang H. Photophysical properties of a series of high luminescent europium complexes with fluorinated ligands. J Lumin. 2011;131(2):328.

    CAS  Google Scholar 

  33. Zucchi G, Murugesan V, Tonfelier D, Aldakov D, Jeon T, Yang F, Thuery P, Ephritikhine M, Geffroy B. Solution, solid state, and film properties of a structurally characterized highly luminescent molecular europium plastic material excitable with visible light. Inorg Chem. 2011;50(11):4851.

    CAS  Google Scholar 

  34. Divya V, Biju S, Verma RL, Reddy MLP. Highly efficient visible light sensitized red emission from europium tris[1-(4-biphenoyl)-3-(2-fluoroyl)propanedione](1,10-phenanthroline) complex grafted on silica nanoparticles. J Mater Chem. 2010;20(25):5220.

    CAS  Google Scholar 

  35. Li HF, Yan PF, Chen P, Wang Y, Xu H, Li GM. Highly luminescent bis-diketone lanthanide complexes with triple-stranded dinuclear structure. Dalton Trans. 2012;41(3):900.

    CAS  Google Scholar 

  36. Brito HF, Malta OL, Souza LR, Menezes JFS, Carvalho CAA. Luminescence of the films of europium(III) with thenoyltrifluoroacetonate and macrocyclics. J Non-Cryst Solids. 1999;247(1–3):129.

    CAS  Google Scholar 

  37. Zhang X, Zhou F, Shi J, Gong M. Sr3.5Mg0.5Si3O8Cl4:Eu2+ bluish-green-emitting phosphor for NUV-based LED. Mater Lett. 2009;63(11):852.

    CAS  Google Scholar 

  38. Teotonio EES, Brito HF, Felinto MCFC, Kodaira CA, Malta OL. Luminescence investigations on Eu(III) thenoyltrifluoroacetonate complexes with amide ligands. J Coord Chem. 2003;56(10):913.

    CAS  Google Scholar 

  39. Ferreira RAS, Nobre SS, Granadeiro CM, Nogueira HIS, Carlos LD, Malta OL. A theoretical interpretation of the abnormal 5D0 → 7F4 intensity based on the Eu3+ local coordination in the Na9[EuW10O36]·14H2O polyoxometalate. J Lumin. 2006;121:561.

    Google Scholar 

  40. Carlos LD, Messaddeq Y, Brito HF, Ferreira RAS, Bermudez VD, Rebeiro SJL. Full-color phosphors from europium(III)-based organosilicates. Adv Mater. 2000;12(8):594.

    CAS  Google Scholar 

  41. Ferreira R, Pires P, de Castro B, Ferreira RAS, Carlos LD, Pischel U. Zirconium organophosphonates as photoactive and hydrophobic host materials for sensitized luminescence of Eu(III), Tb(III), Sm(III), and Dy(III). New J Chem. 2004;28(12):1506.

    CAS  Google Scholar 

  42. Xu H, Yin K, Huang W. Synthesis, photophysical and electroluminescenct properties of a novel bright light-emitting Eu3+ complex based on a fluorene-containing bidentate aryl phosphine oxide. Syn Met. 2010;160(19–20):2197.

    CAS  Google Scholar 

  43. Taha ZA, Ajlouni AM, Al-Hassan KA, Hijaki AK, Faiq AB. Syntheses, characterization, biological activity and fluorescence properties of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand and its lanthanide complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2011;81(1):317.

    CAS  Google Scholar 

  44. Gawryszewska P, Sokolnicki J, Legendziewicz J. Photophysics and structure of selected lanthanide compounds. Coord Chem Rev. 2005;249(21–22):2489.

    CAS  Google Scholar 

  45. Greenham NC, Samuel IDW, Hayes GR, Philips RT, Kessener YARR, Moratti SC, Holmes AB, Friend RH. Measurement of absolute photoluminescence quantum effiencies in conjugated polymers. Chem Phys Lett. 1995;241(1–2):89.

    CAS  Google Scholar 

  46. Zhang A, Zhang J, Pan Q, Wang S, Jia H, Xu B. Synthesis, photoluminescence and intramolecular energy transfer model of a dysprosium complex. J Lumin. 2012;132(4):965.

    CAS  Google Scholar 

  47. Reddy MLP, Divya V, Pavithran R. Visible-light sensitized luminescent europium(III)-β-diketonate complexes: bioprobes for cellular imaging. Dalton Trans. 2013;42(43):15249.

    CAS  Google Scholar 

  48. Latva M, Takalo H, Mukkala VM, Matachescu C, Ubis JCR, Kankare J. Correlation between the lowest triplet state energy level of the ligand and lanthanide(III) luminescence quantum yield. J Lumin. 1997;75(2):149.

    CAS  Google Scholar 

  49. Ilmi R, Hasan N, Liu J, Mara D, Deun RV, Iftikhar K. Effect of 2,4,6-tri(2-pyridyl)-1,3,5-triazine on visible and NIR luminescence of lanthanide tris(trifluoroacetylacetonates). J Photochem Photobiol A. 2017;347:116.

    CAS  Google Scholar 

  50. Dutra JDL, Gimenez IF, da Costa Junior NB, Freire RO. Theoretical design of highly luminescent europium(III) complexes: a factorial study. J. Photochem. Photobio. A. 2011;217(2–3):389.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Junior Research Fellowship (JRF) from University Grants Commission, New Delhi, India (No. 2061410096).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Boora.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhankhar, P., Devi, R., Devi, S. et al. Synthesis and photoluminescent performance of novel europium (III) carboxylates with heterocyclic ancillary ligands. Rare Met. 41, 1342–1352 (2022). https://doi.org/10.1007/s12598-019-01261-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01261-y

Keywords

Navigation