Skip to main content
Log in

Solidification microstructure of high borated stainless steels with rare earth and titanium additions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To study the effects of rare earth (RE) and Ti on the solidification microstructure of high borated stainless steels, 1.6 wt% B stainless steel doped with RE and 2.1 wt% B stainless steel doped with Ti were prepared by ingot casting, respectively. The solidification microstructure of researched steels was characterized in detail. The modification mechanism was clarified based on the heterogeneous nucleation theory and the thermodynamic calculation. The solidification microstructure of 1.6 wt% B and 2.1 wt% B stainless steels was characterized by the continuous and network-like eutectic borides around the matrix grains. It was found that the fine RE compounds could act as the heterogeneous nuclei for both borides and austenite during solidification. Thus, the eutectic borides were more dispersed in the modified steel. Moreover, lots of fine ‘eutectic cells’ were formed in the matrix regions. As a result of the preferential formation of TiB2 during solidification, the amount of the eutectic borides in the steel modified with Ti was significantly decreased. Besides, the continuity of the eutectic borides network was weakened. In a word, the present work provides a promising method to modify the solidification microstructure for high borated stainless steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Li AJ, Lin BQ. Comparing climate policies to reduce carbon emissions in China. Energy Policy. 2013;60(6):667.

    Article  Google Scholar 

  2. Takemoto T, Yamasaki K, Kawai Y. Development of boron-containing stainless steel for thermal neutron shielding. Bull Jpn Inst Met. 1996;35(4):412.

    CAS  Google Scholar 

  3. Tsubota M, Oikawa M. Boron-bearing stainless steels for thermal neutron shielding. Bull Iron Steel Inst Jpn. 2005;12(10):25.

    Google Scholar 

  4. Busby PE, Warga ME, Wells C. Diffusion and solubility of boron in iron and steel. Trans Metall Soc AIME. 1953;5(11):1463.

    CAS  Google Scholar 

  5. Cizek P, Parker BA, Bijok M, Zuna P. The influence of large boride particles on microstructural evolution in AISI 304 steel. ISIJ Int. 1994;34(8):679.

    Article  CAS  Google Scholar 

  6. He JH. The effect of boron content, temperature and neutron fluence on the mechanical properties of the modified type 304 stainless steels with boron. Pennsylvania State: Pennsylvania State University; 1995. 6.

  7. Wang MJ, Bao E, Wang ZX, Zhang SY, Chen C, Li YM, Wei HY. Solidification and boride characteristics of boron-containing austenitic stainless steel. Mater Sci Forum. 2011;704–705:563.

    Article  CAS  Google Scholar 

  8. Hahn S, Isserow S, Ray R. Microstructures and mechanical properties of boride-dispersed precipitation-hardening stainless steels produced by RST. J Mater Sci. 1987;22(9):3395.

    Article  CAS  Google Scholar 

  9. Jimenez JA, Doncel GG, Ruano OA. Characterization and mechanical properties of ultrahigh boron steels produced by powder metallurgy. Metall Mater Trans A. 1996;27(7):1861.

    Article  Google Scholar 

  10. Sun Q, Liu YQ, Fan JZ, Wei SH, Ma ZL, Hao XX. Pore structure of aluminum foam prepared by powder metallurgy with alloying method of precursor. Chin J Rare Met. 2017;41(9):1003.

    Google Scholar 

  11. Nogita K, McDonald SD, Dahle AK. Eutectic modification of Al–Si alloys with rare earth metals. Mater Trans. 2004;45(2):323.

    Article  CAS  Google Scholar 

  12. Liu ZL, Chen X, Li YX, Hu K. Effect of chromium on microstructure and properties of high boron white cast iron. Metall Mater Trans A. 2008;39(3):636.

    Article  CAS  Google Scholar 

  13. Grebennikov RV, Chirkin AV, Vukolova VN, Shavrova TN, Balanik IS. Influence of titanium on the phase composition and deformability of high boron steels. Sov J At Energy. 1967;22(5):481.

    Article  Google Scholar 

  14. Hosseinifar M, Malakhov DV. Effect of Ce and La on microstructure and properties of a 6xxx series type aluminum alloy. J Mater Sci. 2008;43(22):7157.

    Article  CAS  Google Scholar 

  15. Elgallad EM, Doty HW, Alkahtani SA, Samuel FH. Effects of La and Ce addition on the modification of Al-Si based alloys. Adv Mater Sci Eng. 2016;2016(3):1.

    Article  CAS  Google Scholar 

  16. Yi DW, Zhang ZY, Fu HG, Yang CY, Ma SQ, Li YF. A study on the microstructures and toughness of Fe–B cast alloy containing rare earth. J Mater Eng Perform. 2015;24(2):626.

    Article  CAS  Google Scholar 

  17. Fu H, Xiao Q, Kuang J, Jiang Z, Xing JD. Effect of rare earth and titanium additions on the microstructures and properties of low carbon Fe–B cast steel. Mater Sci Eng A. 2007;466(1–2):160.

    Article  CAS  Google Scholar 

  18. Yamashita T, Okuda K, Obara T. Application of Thermo-Calc to the development of high-performance steels. Phase Equilib. 1999;20(3):231.

    Article  CAS  Google Scholar 

  19. Sundman B, Aagren J. Computer applications in the development of steels. MRS Bull. 1999;24(4):32.

    Article  CAS  Google Scholar 

  20. Mousavian RT, Khosroshahi RA, Yazdani S, Brabazon D. Manufacturing of cast A356 matrix composite reinforced with nano- to micrometer-sized SiC particles. Rare Met. 2017;36(1):46.

    Article  CAS  Google Scholar 

  21. Klančnika G, Petrovičb DS, Medveda J. Thermodynamic calculation of phase equilibria in stainless steels. J Min Metall Sect B Metall. 2012;48(3):383.

    Article  Google Scholar 

  22. Na HS, Kim BH, Lee SH, Kang CY. Thermodynamic alloy design of high strength and toughness in 300 mm thick pressure vessel wall of 1.25Cr–0.5Mo steel. Metals. 2018;8(1):70.

    Article  CAS  Google Scholar 

  23. Ma SQ, Xing JD, Fu HG, Gao YM, Zhang JJ. Microstructure and crystallograpgy of borides and secondary precipitation in 18 wt% Cr–4 wt% Ni–1 wt% Mo–3.5 wt% B–0.27 wt% C steel. Acta Mater. 2012;60(3):831.

    Article  CAS  Google Scholar 

  24. Sabooni S, Karimzadeh F, Enayati MH, Ngan AHW. The role of martensitic transformation on bimodal grain structure in ultrafine grained AISI 304L stainless steel. Mater Sci Eng A. 2015;636(5):221.

    Article  CAS  Google Scholar 

  25. Du T. Physical-chemistry effect of rare earth elements on metallic materials. Acta Metall Sin. 1997;33(1):69.

    Article  CAS  Google Scholar 

  26. Sata T, Yoshimura M. Some material properties of cerium sesquioxide. J Ceram Assoc Jpn. 1968;76(4):116.

    Article  CAS  Google Scholar 

  27. Bramfitt BL. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall Trans. 1970;7(1):1987.

    Article  Google Scholar 

  28. Madariaga I, Gutiérrez I. Role of the particle–matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel. Acta Mater. 1999;47(3):951.

    Article  CAS  Google Scholar 

  29. Tian YJ, Wu HQ, Guo JH, Li FR. Effect of RE inclusions on heterogeneous nucleation of primary austenite in Fe-C alloy. J Chin Rare Earth Soc. 1988;6(4):45.

    CAS  Google Scholar 

  30. Wang AQ, Li M, Ma DQ, Wu QJ, Xie JP. Effect of lanthanum on microstructures and properties of ASTM A216 steel. Kem Ind. 2016;65(1–2):11.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51374002, 51574078 and 51774081), the Fundamental Research Funds for the Central Universities (No. N160705001), China Postdoctoral Science Foundation (Nos. 2014M560218 and 2016T90228), and the Student’s Platform for Innovation and Entrepreneurship Training Program (No. 160111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Tao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YW., Liu, HT., Wang, ZJ. et al. Solidification microstructure of high borated stainless steels with rare earth and titanium additions. Rare Met. 39, 1483–1491 (2020). https://doi.org/10.1007/s12598-019-01247-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01247-w

Keywords

Navigation