Skip to main content
Log in

Photoelectrochemical properties of BiVO4 thin films with NaOH chemical treatment

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

BiVO4 thin films were prepared by a mature and simple electrochemical deposition method on F-doped SnO2 substrate electrode (FTO). The influence of a chemical treatment using sodium hydroxide (NaOH) on the photoelectrochemical properties of BiVO4 thin films was studied. It was found that NaOH can etch the crystal surface of BiVO4, which leads to the increase in specific surface area and improved photoelectrochemical activity. The photocurrent density of the BiVO4 thin films showed an enhancement of photoelectronic current from 0.50 to 0.65 mA·cm−2 at 1.23 V (vs. RHE) after the treatment for 5 h by NaOH, which supplies a stronger potential for H2O oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhou M, Zhang S, Sun Y, Wu C, Wang M, Xie Y. C-oriented and 010 facets exposed BiVO4 nanowall films: template-free fabrication and their enhanced photoelectrochemical properties. Chem An Asian J. 2010;5(12):2515.

    Article  Google Scholar 

  2. Yun HN, Iwase A, Kudo A, Amal R. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. J Phys Chem Lett. 2010;1(17):2607.

    Article  Google Scholar 

  3. Berglund SP, Flaherty DW, Hahn NT, Bard AJ, Mullins CB. Photoelectrochemical oxidation of water using nanostructured BiVO4 films. J Phys Chem C. 2015;115(9):3794.

    Article  Google Scholar 

  4. Park HS, Kweon KE, Ye H, Paek E. Factors in the metal doping of BiVO4 for improved photoelectrocatalytic activity as studied by scanning electrochemical microscopy and first-principles density-functional calculation. J Phys Chem C. 2015;115(9):17870.

    Google Scholar 

  5. Wang S, Chen P, Yun JH, Hu Y, Wang L. An electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew Chem Int Ed. 2017;56(29):8500.

    Article  Google Scholar 

  6. Grigioni I, Abdellah M, Corti A, Dozzi MV, Hammarström L, Selli E. Photoinduced charge-transfer dynamics in WO3/BiVO4 photoanodes probed through midinfrared transient absorption spectroscopy. J Am Chem Soc. 2018;140(43):14042.

    Article  Google Scholar 

  7. Liang Y, Messinger J. Improving BiVO4 photoanodes for solar water splitting through surface passivation. Phys Chem Chem Phys. 2014;16(24):12014.

    Article  Google Scholar 

  8. Song J, Seo MJ, Lee TH, Jo YR, Lee J, Kim TL, Kim SY, Jeong SY, An H, Kim S, Lee BH, Lee D, Jang HW, Kim BJ, Lee S. Tailoring crystallographic orientations to substantially enhance charge separation efficiency in anisotropic BiVO4 photoanodes. ACS Catal. 2018;8(7):5952.

    Article  Google Scholar 

  9. Yan GY, Zheng LP, Xie LS, Weng XL, Ye JH. Nature of Ag–Bi-codoped TiO2 visible light photocatalyst. Rare Met. 2011;30(S1):259.

    Article  Google Scholar 

  10. Park Y, Mcdonald KJ, Choi KS. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem Soc Rev. 2013;42(6):2321.

    Article  Google Scholar 

  11. Sayama K, Nomure A, Arai T, Sugita T, Abe R, Yanagida M, Qi T, lwasaki Y, Abe Y, Sugihara H. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment. J Phys Chem B. 2006;110(23):11352.

    Article  Google Scholar 

  12. Abdi FF, Firet N. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. Chemcatchem. 2013;5:490.

    Article  Google Scholar 

  13. Zhang T, Shao X, Zhang DF, Pu XP, Tang YX, Yin J, Ge B, Li WZ. Synthesis of direct Z-scheme g-C3N4/Ag2VO2PO4 photocatalysts with enhanced visible light photocatalytic activity. Sep Purif Technol. 2018;195:332.

    Article  Google Scholar 

  14. Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc. 2017;139:1675.

    Article  Google Scholar 

  15. Cooper JK, Gul S, Toma FM. Electronic structure of monoclinic BiVO4. Chem Mater. 2014;26(18):5365.

    Article  Google Scholar 

  16. Gao M, Zhang D, Pu X, Ma H, Su C, Gao X, Dou J. Surface decoration of BiOBr with BiPO4 nanoparticles to build heterostructure photocatalysts with enhanced visible-light photocatalytic activity. Sep Purif Technol. 2016;170:183.

    Article  Google Scholar 

  17. Zhang W, Chen X, Han Y, Yao S. Effect of SnO2 addition on phase transformation of TiO2 photocatalyst prepared by sol–gel method. Rare Met. 2011;30(1):229.

    Article  Google Scholar 

  18. Oshikiri M, Boero M. Water molecule adsorption properties on the BiVO4 (100) surface. J Phys Chem B. 2006;110(18):9188.

    Article  Google Scholar 

  19. Luo Y, Tan G, Dong G, Ren H, Xia A. A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light. Appl Surf Sci. 2016;364:156.

    Article  Google Scholar 

  20. Fu X, Xie M, Peng L, Jing L. Effective visible-excited charge separation in silicate-bridged ZnO/BiVO4 nanocomposite and its contribution to enhanced photocatalytic activity. ACS Appl Mater Interfaces. 2014;6(21):18550.

    Article  Google Scholar 

  21. Xiao S, Chen H, Yang Z, Long X, Wang Z, Zhu Z, Qu Y, Yang S. Origin of the different photoelectrochemical performance of mesoporous BiVO4 photoanodes between the BiVO4 and the FTO side illumination. J Phys Chem C. 2015;119:23350.

    Article  Google Scholar 

  22. Luan SL, Duan A, Li A, Jiang WS, Gao X, Hua SX, Miao X, Wen YJ, Sun ZC. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Sci Bull. 2018;63(11):683.

    Article  Google Scholar 

  23. Zachäus C, Abdi FF, Peter LM, van de Krol R. Photocurrent of BiVO4 is limited by surface recombination, not surface catalysis. Chem Sci. 2017;8(5):3712.

    Article  Google Scholar 

  24. Xu H, Liu SQ, Zhou S, Yuan TZ, Wang X, Tang X, Yin J, Tao HJ. Morphology and photocatalytic performance of nano-sized TiO2 prepared by simple hydrothermal method with different pH values. Rare Met. 2018;37(9):750.

    Article  Google Scholar 

  25. Long MC, Cai WM, Kisch H. Visible light induced photoelectrochemical properties of n-BiVO4 and n-BiVO4/p-Co3O4. J Phys Chem C. 2008;112(2):548.

    Article  Google Scholar 

  26. Kim TW, Choi K-S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science. 2014;343(6174):990.

    Article  Google Scholar 

  27. Zhang L, Lin C, Valev VK, Reisner E, Steiner U, Baumberg JJ. Plasmonic enhancement in BiVO4 photonic crystals for efficient Water Splitting. Small. 2014;10:3970.

    Article  Google Scholar 

  28. Nikam S, Joshi S. Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. Rsc Adv. 2016;6:107463.

    Article  Google Scholar 

  29. Thalluri SM, Rojas RM, Rivera OD, Hernandez S, Russo N, Rodil SE. Chemically induced porosity on BiVO4 films produced by double magnetron sputtering to enhance the photo-electrochemical response. Phys Chem Chem Phys. 2015;17(27):17821.

    Article  Google Scholar 

  30. Li HQ, Cui YM, Hong WS, Hua L, Tao DL. Photodegradation of methyl orange by BiOI-sensitized TiO2. Rare Met. 2012;31(6):604.

    Article  Google Scholar 

  31. Shen J, Meng YL, Xin G. CdS/TiO2 nanotubes hybrid as visible light driven photocatalyst for water splitting. Rare Met. 2011;30(S1):280.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672018 and 51472016) and Beijing Natural Science Foundation (No. Z180007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Chang Hao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, DD., Liu, JF., Zhang, Z. et al. Photoelectrochemical properties of BiVO4 thin films with NaOH chemical treatment. Rare Met. 38, 446–452 (2019). https://doi.org/10.1007/s12598-019-01210-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01210-9

Keywords

Navigation