Skip to main content
Log in

Structural stability improvement, Williamson Hall analysis and band-gap tailoring through A-site Sr doping in rare earth based double perovskite La2NiMnO6

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The structural, morphological and optical properties of single-phase polycrystalline La2−xSrxNiMnO6 (x = 0, 0.3 and 0.5), synthesized by solid state reaction were investigated. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM)/energy dispersive analysis of X-rays (EDAX), Raman spectroscopy and diffuse reflectance spectroscopy (DRS) to elucidate the role of A-site Sr-doping in double perovskite La2NiMnO6. Rietveld analysis of XRD patterns revealed that all the samples have monoclinic structure with space group P21/n. Positive gradient in the Williamson Hall plots revealed the presence of tensile strain in all the samples. The morphological studies revealed that average grain size increases along with appreciable decrease in porosity with Sr doping. The Ni/Mn antisite disorder was introduced in the La2NiMnO6 by Sr-doping confirmed by an increase in the full width at half maximum (FWHM) and decrease in intensity of the Raman modes at around 540 and 665 cm−1 which correspond to the antisymmetric stretching and symmetric stretching modes, respectively. DRS results reveal that the band gap in La2NiMnO6 can be tuned down by Sr-doping to a value of 1.37 eV (very close to 1.40 eV, considered as optimum value for better efficiency of a solar cell). Thus, Sr-doped La2NiMnO6 may be of prime importance for applications in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kobayashi KI, Kimura T, Sawada H, Terakura K, Tokura Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature. 1998;395(6703):677.

    Article  CAS  Google Scholar 

  2. Choudhury D, Mandal P, Mathieu R, Hazarika A, Rajan S, Sundaresan A, Waghmare UV, Knut R, Karis O, Nordblad P, Sarma DD. Near-room-temperature colossal magnetodielectricity and multiglass properties in partially disordered La2NiMnO6. Phys Rev Lett. 2012;108(12):127201.

    Article  CAS  Google Scholar 

  3. Rogado NS, Li J, Sleight AW, Subramanian MA. Magnetocapacitance and magnetoresistance near room temperature in a ferromagnetic semiconductor: La2NiMnO6. Adv Mater. 2005;17(18):2225.

    Article  CAS  Google Scholar 

  4. Kuepper K, Kadiroglu M, Postnikov AV, Prince KC, Matteucci M, Galakhov VR, Hesse H, Borstel G, Neumann M. Electronic structure of highly ordered Sr2FeMoO6: XPS and XES studies. J Phys Condens Matter. 2005;17(27):4309.

    Article  CAS  Google Scholar 

  5. Raekers M, Kuepper K, Hesse H, Balasz I, Deac IG, Constantinescu S, Burzo E, Valeanu M, Neumann M. Investigation of chemical and grain boundary effects in highly ordered Sr2FeMoO6: XPS and Mossbauer studies. J Optoelectron Adv Mater. 2006;8(2):455.

    CAS  Google Scholar 

  6. Kimura T, Kawamoto S, Yamada I, Azuma M, Takano M, Tokura Y. Magnetocapacitance effect in multiferroic BiMnO3. Phys Rev B. 2003;67(18):180401.

    Article  Google Scholar 

  7. Lawes G, Ramirez AP, Varma CM, Subramanian MA. Magnetodielectric effects from spin fluctuations in isostructural ferromagnetic and antiferromagnetic systems. Phys Rev Lett. 2003;91(25):257208.

    Article  CAS  Google Scholar 

  8. Lüders U, Bibes M, Bouzehouane K, Jacquet E, Contour JP, Fusil S, Bobo JF, Fontcuberta J, Barthélémy A, Fert A. Spin filtering through ferrimagnetic NiFe2O4 tunnel barriers. Appl Phys Lett. 2006;88(8):082505.

    Article  Google Scholar 

  9. Gajek M, Bibes M, Barthélémy A, Bouzehouane K, Fusil S, Varela M, Fontcuberta J, Fert A. Spin filtering through ferromagnetic BiMnO3 tunnel barriers. Phys Rev B. 2005;72(2):020406.

    Article  Google Scholar 

  10. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. Observation of coupled magnetic and electric domains. Nature. 2002;419(6909):818.

    Article  CAS  Google Scholar 

  11. Lan C, Zhao S, Xu T, Ma J, Hayase S, Ma T. Investigation on structures, band gaps, and electronic structures of lead free La2NiMnO6 double perovskite materials for potential application of solar cell. J Alloys Compd. 2016;655:208.

    Article  CAS  Google Scholar 

  12. Dass RI, Yan JQ, Goodenough JB. Oxygen stoichiometry, ferromagnetism, and transport properties of La2−xNiMnO6+δ. Phys Rev B. 2003;68(6):064415.

    Article  Google Scholar 

  13. Munoz A, Alonso JA, Casais MT, Martinez-Lope MJ, Fernandez-Diaz MT. Crystal and magnetic structure of the complex oxides Sr2MnMoO6, Sr2MnWO6 and Ca2MnWO6: a neutron diffraction study. J Phys Condens Matter. 2002;14(38):8817.

    Article  CAS  Google Scholar 

  14. Azad AK, Eriksson SG, Ivanov SA, Mathieu R, Svedlindh P, Eriksen J, Rundlöf H. Synthesis, structural and magnetic characterisation of the double perovskite A2MnMoO6 (A=Ba, Sr). J Alloys Compd. 2004;364(1):77.

    Article  CAS  Google Scholar 

  15. Martínez-Lope MJ, Alonso JA, Casais MT. Synthesis, crystal and magnetic structure of the double perovskites A2NiMoO6 (A=Sr, Ba): a neutron diffraction study. Eur J Inorg Chem. 2003;2003(15):2839.

    Article  Google Scholar 

  16. Eriksson AK, Eriksson SG, Ivanov SA, Knee CS, Eriksen J, Rundlöf H, Tseggai M. High temperature phase transition of the magnetoelectric double perovskite Sr2NiMoO6 by neutron diffraction. Mater Res Bull. 2006;41(1):144.

    Article  CAS  Google Scholar 

  17. Das H, Waghmare UV, Saha-Dasgupta T, Sarma DD. Electronic structure, phonons, and dielectric anomaly in ferromagnetic insulating double pervoskite La2NiMnO6. Phys Rev Lett. 2008;100(18):186402.

    Article  Google Scholar 

  18. Dass RI, Goodenough JB. Multiple magnetic phases of La2CoMnO6−δ (0 < ~δ < ~0.05). Phys Rev B. 2003;67(1):014401.

    Article  Google Scholar 

  19. Nair HS, Swain D, Adiga S, Narayana C, Elzabeth S. Griffiths phase-like behavior and spin-phonon coupling in double perovskite Tb2NiMnO6. J Appl Phys. 2011;110(12):123919.

    Article  Google Scholar 

  20. Singh MP, Truong KD, Jandl S, Fournier P. Magnetic properties and phonon behavior of Pr2NiMnO6 thin films. Appl Phys Lett. 2011;98(16):162506.

    Article  Google Scholar 

  21. Tang MH, Xiao YG, Jiang B, Hou JW, Li JC, He J. The giant dielectric tunability effect in bulk Y2NiMnO6 around room temperature. Appl Phys A. 2011;105(3):679.

    Article  CAS  Google Scholar 

  22. Booth RJ, Fillman R, Whitaker H, Nag A, Tiwari RM, Ramanujachary KV, Gopalakrishnan J, Lofland SE. An investigation of structural, magnetic and dielectric properties of R2NiMnO6 (R = rare earth, Y). Mater Res Bull. 2009;44(7):1559.

    Article  CAS  Google Scholar 

  23. Bull CL, Gleeson D, Knight KS. Determination of B-site ordering and structural transformations in the mixed transition metal perovskites La2CoMnO6 and La2NiMnO6. J Phys Condens Matter. 2003;15(29):4927.

    Article  CAS  Google Scholar 

  24. Padhan P, Guo HZ, LeClair P, Gupta A. Dielectric relaxation and magnetodielectric response in epitaxial thin films of La2NiMnO6. Appl Phys Lett. 2008;92(2):022909.

    Article  Google Scholar 

  25. Singh MP, Grygiel C, Sheets WC, Boullay P, Hervieu M, Prellier W, Mercey B, Simon C, Raveau B. Absence of long-range Ni/Mn ordering in ferromagnetic La2NiMnO6 thin films. Appl Phys Lett. 2007;91(1):012503.

    Article  Google Scholar 

  26. Hashisaka M, Kan D, Masuno A, Takano M, Shimakawa Y, Terashima T, Mibu K. Epitaxial growth of ferromagnetic La2NiMnO6 with ordered double-perovskite structure. Appl Phys Lett. 2006;89(3):032504.

    Article  Google Scholar 

  27. Guo HZ, Burgess J, Ada E, Street S, Gupta A, Iliev MN, Kellock AJ, Magen C, Varela M, Pennycook SJ. Influence of defects on structural and magnetic properties of multifunctional La2NiMnO6 thin films. Phys Rev B. 2008;77(17):174423.

    Article  Google Scholar 

  28. Iliev MN, Guo H, Gupta A. Raman spectroscopy evidence of strong spin-phonon coupling in epitaxial thin films of the double perovskite La2NiMnO6. Appl Phys Lett. 2007;90(15):151914.

    Article  Google Scholar 

  29. Lin YQ, Chen XM, Liu XQ. Relaxor-like dielectric behavior in La2NiMnO6 double perovskite ceramics. Solid State Commun. 2009;149(19):784.

    Article  CAS  Google Scholar 

  30. Henao J, Sotelo O, Casales-Diaz M, Martinez-Gomez L. Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications. Rare Met. 2018;37(12):1003.

    Article  CAS  Google Scholar 

  31. Sheikh, Ghosh D, Dutta A, Bhattacharyya S, Sinha TP. Lead free double perovskite oxides Ln2NiMnO6 (Ln = La, Eu, Dy, Lu), a new promising material for photovoltaic application. Mater Sci Eng B. 2017;31(226):10.

    Article  Google Scholar 

  32. Salje E. Characteristics of perovskite-related materials. Philos Trans R Soc Lond A. 1989;328(1599):409.

    Article  CAS  Google Scholar 

  33. Rednic L, Deac I, Dorolti E, Coldea M, Rednic V, Neumann M. Magnetic cluster developement in In1−xMnxSb semiconductor alloys. Open Phys. 2010;8(4):620.

    Article  CAS  Google Scholar 

  34. Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys B Condens Matter. 1993;192(1–2):55.

    Article  Google Scholar 

  35. Goldschmidt VM. Die gesetze der krystallochemie. Naturwissenschaften. 1926;14(21):477.

    Article  CAS  Google Scholar 

  36. Anderson MT, Greenwood KB, Taylor GA, Poeppelmeier KR. B-cation arrangements in double perovskites. Prog Solid State Chem. 1993;22(3):197.

    Article  CAS  Google Scholar 

  37. Yogamalar R, Srinivasan R, Vinu A, Ariga K, Bose AC. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009;149(43):1919.

    Article  CAS  Google Scholar 

  38. Biju V, Sugathan N, Vrinda V, Salini SL. Estimation of lattice strain in nanocrystalline silver from X-ray diffraction line broadening. J Mater Sci. 2008;43(4):1175.

    Article  CAS  Google Scholar 

  39. Dinesha ML, Prasanna GD, Naveen CS, Jayanna HS. Structural and dielectric properties of Fe doped ZnO nanoparticles. Ind J Phys. 2013;87(2):147.

    Article  CAS  Google Scholar 

  40. Williamson GK, Hall WH. X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22.

    Article  CAS  Google Scholar 

  41. Kumar P, Ghara S, Rajeswaran B, Muthu DV, Sundaresan A, Sood AK. Temperature dependent magnetic, dielectric and Raman studies of partially disordered La2NiMnO6. Solid State Commun. 2014;184:47.

    Article  CAS  Google Scholar 

  42. Guo Y, Shi L, Zhou S, Zhao J, Wang C, Liu W, Wei S. Tunable exchange bias effect in Sr-doped double perovskite La2NiMnO6. J Phys D Appl Phys. 2013;46(17):175302.

    Article  Google Scholar 

  43. Gouadec G, Colomban P. Raman spectroscopy of nanomaterials: how spectra relate to disorder, particle size and mechanical properties. Prog Cryst Growth Charact. 2007;53(1):1.

    Article  CAS  Google Scholar 

  44. Andrews RL, Heyns AM, Woodward PM. Raman studies of A2MWO6 tungstate double perovskites. Dalton Trans. 2015;44(23):10700.

    Article  CAS  Google Scholar 

  45. Zhao S, Shi L, Zhou S, Zhao J, Yang H, Guo Y. Size-dependent magnetic properties and Raman spectra of La2NiMnO6 nanoparticles. J Appl Phys. 2009;106(12):123901.

    Article  Google Scholar 

  46. Sultan K, Ikram M, Asokan K. Effect of Mn doping on structural, morphological and dielectric properties of EuFeO3 ceramics. RSC Adv. 2015;5(114):93867.

    Article  CAS  Google Scholar 

  47. Campbell IH, Fauchet PM. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986;58(10):739.

    Article  CAS  Google Scholar 

  48. Kubelka P, Munk F. An article on optics of paint layers. Z Tech Phys. 1931;12:593.

    Google Scholar 

  49. Yeredla RR, Xu H. An investigation of nanostructured rutile and anatase plates for improving the photo-splitting of water. Nanotechnlogy. 2008;19(5):055706.

    Article  Google Scholar 

  50. Lin H, Huang CP, Li W, Ni C, Shah SI, Tseng YH. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl Catal B Environ. 2006;68(1):1.

    CAS  Google Scholar 

  51. Tauc J, Grigorovici R, Vancu A. Optical properties and electronic structure of amorphous germanium. Phys Status Solidi B. 1966;15(2):627.

    Article  CAS  Google Scholar 

  52. Munoz D, Harrison NM, Illas F. Electronic and magnetic structure of LaMnO3 from hybrid periodic density-functional theory. Phys Rev B. 2004;69(8):085115.

    Article  Google Scholar 

  53. Sánchez MC, Garcia J, Blasco J, Subías G, Perez-Cacho J. Local electronic and geometrical structure of LaNi1−xMnxO3+δ perovskites determined by X-ray-absorption spectroscopy. Phy Rev B. 2002;65(14):144409.

    Article  Google Scholar 

  54. Kitamura M, Ohkubo I, Matsunami M, Horiba K, Kumigashira H, Matsumoto Y, Koinuma H, Oshima M. Electronic structure characterization of La2NiMnO6 epitaxial thin films using synchrotron-radiation photoelectron spectroscopy and optical spectroscopy. Appl Phys Lett. 2009;94(26):262503.

    Article  Google Scholar 

  55. Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F. Band-gap tuning of multiferroic oxide solar cells. Nat Photonics. 2015;9(1):61.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the full support from our Institute, National Institute of Technology Srinagar. We are also thankful to Dr. K Asokan, Dr. Saif A Khan, senior scientists at IUAC New Delhi, Dr. Shahnaz Majeed (Senr. Lecturer, UniKL RCMP Malaysia), Dr. Khalid Sultan (Asst. Prof. CUK), Dr Rubiya Samad (WoS-A at Univ. of Kashmir) and Dr. Sheeraz A. Bhat (PDF at NIT Srinagar) for their valuable suggestions in the development of this manuscript. The author, Shah Aarif Ul Islam is thankful to Ministry of Human Resource Development (MHRD) India, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Aarif Ul Islam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aarif Ul Islam, S., Ikram, M. Structural stability improvement, Williamson Hall analysis and band-gap tailoring through A-site Sr doping in rare earth based double perovskite La2NiMnO6. Rare Met. 38, 805–813 (2019). https://doi.org/10.1007/s12598-019-01207-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01207-4

Keywords

Navigation