Skip to main content

Advertisement

Log in

Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Ti–3Cu alloy has shown low melting point and strong antibacterial properties against S. aureus and E. coli and thus has potential application as dental materials and orthopedic application. In this paper, the corrosion properties of Ti–3Cu alloy in five kinds of simulated solutions were investigated in comparison with cp-Ti (commercially pure titanium) by electrochemical technology and immersion experiment. Electrochemical results have demonstrated that Ti–3Cu alloy exhibited much nobler corrosion potential, lower corrosion current density and high corrosion resistance than cp-Ti in all solutions, especially in saliva-pH6.8 + 0.2F and saliva-pH3.5, indicating that Ti–3Cu alloy has much better anticorrosion properties than cp-Ti. Immersion results have shown that Ti ion and Cu ion were released from Ti–3Cu, especially in saliva-pH6.8 + 0.2F and saliva-pH3.5 solutions. Both electrochemical data and immersion results have indicated that high corrosion rate and high metal ion release rate were detected in F ion-containing solution and low-pH solution, displaying that F and low pH had much strong aggressive attack to cp-Ti and Ti–3Cu alloy. The corroded surface morphology was observed by scanning electron microscopy (SEM), and the roughness was tested in the end. The good corrosion resistance of antibacterial Ti–3Cu alloy suggests its great potential as a long-term biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater. 2003;4(5):445.

    Article  Google Scholar 

  2. Rack HJ, Qazi JI. Titanium alloys for biomedical applications. Mater Sci Eng C-Biomim Supramol Syst. 2006;26(8):1269.

    Article  Google Scholar 

  3. Wilches LV, Uribe JA, Toro A. Wear of materials used for artificial joints in total hip replacements. Wear. 2008;265(1–2):143.

    Article  Google Scholar 

  4. Elias CN, Lima JHC, Valiev R, Meyers MA. Biomedical applications of titanium and its alloys. JOM. 2008;60(3):46.

    Article  Google Scholar 

  5. Tamilselvi S, Raman V, Rajendran N. Corrosion behaviour of Ti–6Al–7Nb and Ti–6Al–4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim Acta. 2006;52(3):839.

    Article  Google Scholar 

  6. Vasilescu C, Drob P, Vasilescu E, Demetrescu I, Ionita D, Prodana M, Drob SI. Characterisation and corrosion resistance of the electrodeposited hydroxyapatite and bovine serum albumin/hydroxyapatite films on Ti–6Al–4V–1Zr alloy surface. Corrosion Sci. 2011;53(3):992.

    Article  Google Scholar 

  7. Al-Mayouf AM, Al-Swayih AA, Al-Mobarak NA, Al-Jabab AS. Corrosion behavior of a new titanium alloy for dental implant applications in fluoride media. Mater Chem Phys. 2004;86(2–3):320.

    Article  Google Scholar 

  8. Pulikkottil VJ, Chidambaram S, Bejoy P, Femin P, Paul P, Rishad M. Corrosion resistance of stainless steel, nickel-titanium, titanium molybdenum alloy, and ion-implanted titanium molybdenum alloy archwires in acidic fluoride-containing artificial saliva: an in vitro study. J Pharm Bioallied Sci. 2016;8(S1):S96.

    Google Scholar 

  9. Nakagawa M, Matsuya S, Koich U. Corrosion behavior of pure titanium and titanium alloys in fluoride-containing solutions. Dent Mater J. 2001;20(4):305.

    Article  Google Scholar 

  10. Huang H-H. Effect of fluoride and albumin concentration on the corrosion behavior of Ti–6Al–4V alloy. Biomaterials. 2003;24(2):275.

    Article  Google Scholar 

  11. Huang HH. Effects of fluoride concentration and elastic tensile strain on the corrosion resistance of commercially pure titanium. Biomaterials. 2002;23(1):59.

    Article  Google Scholar 

  12. Souza J, Barbosa S, Ariza E, Celis JP, Rocha L. Simultaneous degradation by corrosion and wear of titanium in artificial saliva containing fluorides. Wear. 2012;292:82.

    Article  Google Scholar 

  13. Luo P, Wang S, Zhao T, Li Y. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy. Rare Met. 2013;32(2):113.

    Article  Google Scholar 

  14. Shirai T, Tsuchiya H, Shimizu T, Ohtani K, Zen Y, Tomita K. Prevention of pin tract infection with titanium-copper alloys. J Biomed Mater Res B Appl Biomater. 2009;91(1):373.

    Article  Google Scholar 

  15. Zhang E, Li F, Wang H, Liu J, Wang C, Li M, Yang K. A new antibacterial titanium–copper sintered alloy: preparation and antibacterial property. Mater Sci Eng, C. 2013;33(7):4280.

    Article  Google Scholar 

  16. Zhang E, Ren J, Li S, Yang L, Qin G. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti–Cu alloys. Biomed Mater. 2016;11(6):065001.

    Article  Google Scholar 

  17. Zhang E, Wang X, Chen M, Hou B. Effect of the existing form of Cu element on the mechanical properties, bio-corrosion and antibacterial properties of Ti–Cu alloys for biomedical application. Mater Sci Eng, C. 2016;69:1210.

    Article  Google Scholar 

  18. Ren L, Ma Z, Li M, Zhang Y, Liu W, Liao Z, Yang K. Antibacterial properties of Ti–6Al–4V–xCu alloys. J Mater Sci Technol. 2014;30(7):699.

    Article  Google Scholar 

  19. Chern Lin JH, Moser JB, Taira M, Greener EH. Cu–Ti, Co–Ti and Ni–Ti systems: corrosion and microhardness. J Oral Rehabil. 1990;17(4):383.

    Article  Google Scholar 

  20. Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium-copper sintered alloys. Mater Sci Eng C-Mater Biolog Appl. 2014;35:392.

    Article  Google Scholar 

  21. Taira M, Moser JB, Greener EH. Studies of Ti alloys for dental castings. Dent Mater. 1989;5(1):45.

    Article  Google Scholar 

  22. Bai B, Zhang E, Dong H, Liu J. Biocompatibility of antibacterial Ti–Cu sintered alloy: in vivo bone response. J Mater Sci-Mater Med. 2015;26(12):265.

    Article  Google Scholar 

  23. Liu J, Zhang X, Wang H, Li F, Li M, Yang K, Zhang E. The antibacterial properties and biocompatibility of a Ti–Cu sintered alloy for biomedical application. Biomed Mater. 2014;9(2):25013.

    Article  Google Scholar 

  24. Takahashi M, Kikuchi M, Takada Y, Okuno O. Mechanical properties and microstructures of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2002;21(3):270.

    Article  Google Scholar 

  25. Kikuchi M, Takada Y, Kiyosue S, Yoda M, Woldu M, Cai Z, Okuno O, Okabe T. Mechanical properties and microstructures of cast Ti–Cu alloys. Dent Mater. 2003;19(3):174.

    Article  Google Scholar 

  26. Ohkubo C, Shimura I, Aoki T, Hanatani S, Hosoi T, Hattori M, Oda Y, Okabe T. Wear resistance of experimental Ti–Cu alloys. Biomaterials. 2003;24(20):3377.

    Article  Google Scholar 

  27. Kikuchi M, Takahashi M, Okabe T, Okuno O. Grindability of dental cast Ti–Ag and Ti–Cu alloys. Dent Mater J. 2003;22(2):191.

    Article  Google Scholar 

  28. Hattori M, Kaku S, Hasegawa K, Kawada E, Oda Y, Okabe T. Casting accuracy of experimental Ti–Cu alloys. J Dent Res. 2000;79:416.

    Google Scholar 

  29. Mutlu I, Oktay E. Characterization of 17-4 PH stainless steel foam for biomedical applications in simulated body fluid and artificial saliva environments. Mater Sci Eng, C. 2013;33(3):1125.

    Article  Google Scholar 

  30. Bao M, Liu Y, Wang X, Yang L, Li S, Ren J, Li S, Yang L, Qin G, Zhang E. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti–3Cu alloy by heat treatment. Bioact Mater. 2018;3(1):28.

    Article  Google Scholar 

  31. Chaturvedi T. An overview of the corrosion aspect of dental implants (titanium and its alloys). Indian J Dent Res. 2009;20(1):91.

    Article  Google Scholar 

  32. Tomashov N, Altovsky R, Chernova G. Passivity and corrosion resistance of titanium and its alloys. J Electrochem Soc. 1961;108(2):113.

    Article  Google Scholar 

  33. Hickman J, Gulbransen E. Oxide films formed on titanium, zirconium, and their alloys with nickel, copper, and cobalt. Anal Chem. 1948;20(2):158.

    Article  Google Scholar 

  34. Virtanen S, Milošev I, Gomez-Barrena E, Trebše R, Salo J, Konttinen Y. Special modes of corrosion under physiological and simulated physiological conditions. Acta Biomater. 2008;4(3):468.

    Article  Google Scholar 

  35. Morcillo M, Diaz I, Chico B, Cano H, de la Fuente D. Weathering steels: from empirical development to scientific design. A review. Corros Sci. 2014;83:6.

    Article  Google Scholar 

  36. Sun Q, Yu Z, Zhu R. Dynamic fracture toughness of Ti–2.5Cu alloy strengthened with nano-scale particles at room and low temperatures. Mater Sci Eng, A. 2008;483:131.

    Article  Google Scholar 

  37. Liu J, Li F, Liu C, Wang H, Ren B, Yang K, Zhang E. Effect of Cu content on the antibacterial activity of titanium–copper sintered alloys. Mater Sci Eng, C. 2014;35:392.

    Article  Google Scholar 

  38. Osório WR, Cremasco A, Andrade PN, Garcia A, Caram R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim Acta. 2010;55(3):759.

    Article  Google Scholar 

  39. Davis JR. Copper and Copper Alloys. Cleveland: ASM International; 2001. 13.

    Google Scholar 

  40. Santo CE, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, Grass G. Bacterial killing by dry metallic copper surfaces. Appl Environ Microbiol. 2011;77(3):794.

    Article  Google Scholar 

  41. Cakmak H, Taylor HS. Implantation failure: molecular mechanisms and clinical treatment. Hum Reprod Update. 2011;17(2):242.

    Article  Google Scholar 

  42. Brewer GJ. Risks of copper and iron toxicity during aging in humans. Chem Res Toxicol. 2010;23(2):319.

    Article  Google Scholar 

  43. Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y. Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevice. 2012;14(4):709.

    Article  Google Scholar 

  44. Bennett MR, Anglin S, Mcewan JR, Jagoe R, Newby AC, Evan GI. Inhibition of vascular smooth muscle cell proliferation in vitro and in vivo by c-myc antisense oligodeoxynucleotides. J Clin Investig. 1994;93(2):820.

    Article  Google Scholar 

  45. Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials. 2010;31(5):824.

    Article  Google Scholar 

  46. Zhang E, Zheng L, Liu J, Bai B, Liu C. Influence of Cu content on the cell biocompatibility of Ti–Cu sintered alloys. Mater Sci Eng, C. 2015;46:148.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 81071262 and 31271024), the Funding from Northeastern University, China (Nos. N141008001 and LZ2014018) and Beijing Municipal Natural Science Foundation (No. 7161001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Fu Chen or Er-Lin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, DG., Bao, MM., Wang, XY. et al. Biocorrosion properties of Ti–3Cu alloy in F ion-containing solution and acidic solution and biocompatibility. Rare Met. 38, 503–511 (2019). https://doi.org/10.1007/s12598-019-01202-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01202-9

Keywords

Navigation