Skip to main content
Log in

Bending mechanical properties of W/TiN/Ta composites with interfacial TiN coatings

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Tungsten is one of best candidates for plasma facing materials (PFMs) in fusion reactors. But its application in fusion areas is strongly restricted by the inherent brittleness and high ductile–brittle transition temperature. To improve the toughness of W-based materials, W/TiN/Ta-laminated composites were fabricated by spark plasma sintering. Three-point bending test was performed to investigate the bending mechanical properties. Multiple crack propagation is the main crack propagation mode in W/TiN/Ta composites. Energy dissipation by interfacial debonding and crack deflection at interfaces as well as crack bridging by Ta foils and plastic deformation of Ta can contribute to the toughening of W/TiN/Ta composites. The existence of interfacial TiN coatings can act as weak points and promote interfacial debonding. TiN coatings with (111) preferred orientation are found to be conducive to the strengthening of W/TiN/Ta composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rieth M, Dudarev SL, Gonzalez de Vicente SM, Aktaa J, Ahlgren T, Antusch S, Armstrong DEJ, Balden M, Baluc N, Barthe MF, Basuki WW, Battabyal M, Becquart CS, Blagoeva D, Boldyryeva H, Brinkmann J, Celino M, Ciupinski L, Correia JB, De Backer A, Domain C, Gaganidze E, García-Rosales C, Gibson J, Gilbert MR, Giusepponi S, Gludovatz B, Greuner H, Heinola K, Höschen T, Hoffmann A, Holstein N, Koch F, Krauss W, Li H, Lindig S, Linke J, Linsmeier C, López-Ruiz P, Maier H, Matejicek J, Mishra TP, Muhammed M, Muñoz A, Muzyk M, Nordlund K, Nguyen-Manh D, Opschoor J, Ordás N, Palacios T, Pintsuk G, Pippan R, Reiser J, Riesch J, Roberts SG, Romaner L, Rosiński M, Sanchez M, Schulmeyer W, Traxler H, Ureña A, van der Laan JG, Veleva L, Wahlberg S, Walter M, Weber T, Weitkamp T, Wurster S, Yar MA, You JH, Zivelonghi A. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J Nucl Mater. 2013;432(1–3):482.

    Article  CAS  Google Scholar 

  2. Reiser J, Rieth M, Dafferner B, Hoffmann A. Tungsten foil laminate for structural divertor applications: basics and outlook. J Nucl Mater. 2012;423(1–3):1.

    Article  CAS  Google Scholar 

  3. Kurishita H, Matsuo S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Okano H, Watanabe H, Yoshida N, Torikai Y, Hatano Y, Takida T, Kato M, Ikegaya A, Ueda Y, Hatakeyama M, Shikama T. Current status of nanostructured tungsten-based materials development. Phys Scr. 2014;T159:014032.

    Article  CAS  Google Scholar 

  4. Rieth M, Hoffmann A. Influence of microstructure and notch fabrication on impact bending properties of tungsten materials. Int J Refract Metal Hard Mater. 2010;28(6):679.

    Article  CAS  Google Scholar 

  5. Reiser J, Rieth M, Dafferner B, Baumgärtner S, Ziegler R, Hoffmann A. Deep drawing of tungsten plates for structural divertor applications in future fusion devices. Fusion Eng Des. 2011;86(12):2949.

    Article  CAS  Google Scholar 

  6. Reiser J, Rieth M, Dafferner B, Hoffmann A, Yi X, Armstrong DEJ. Tungsten foil laminate for structural divertor applications—analyses and characterisation of tungsten foil. J Nucl Mater. 2012;424(1–3):197.

    Article  CAS  Google Scholar 

  7. Wurster S, Baluc N, Battabyal M, Crosby T, Du J, García-Rosales C, Hasegawa A, Hoffmann A, Kimura A, Kurishita H, Kurtz RJ, Li H, Noh S, Reiser J, Riesch J, Rieth M, Setyawan W, Walter M, You JH, Pippan R. Recent progress in R&D on tungsten alloys for divertor structural and plasma facing materials. J Nucl Mater. 2013;442(1–3):S181.

    Article  CAS  Google Scholar 

  8. Cui K, Shen Y, Yu J, Ji B. Microstructural characteristics of commercial purity W and W–1% La2O3 alloy. Int J Refract Metal Hard Mater. 2013;41:143.

    Article  CAS  Google Scholar 

  9. Zhang X, Yan Q, Yang C, Wang T, Xia M, Ge C. Recrystallization temperature of tungsten with different deformation degrees. Rare Met. 2016;35(7):566.

    Article  CAS  Google Scholar 

  10. Kim J-H, Park C, Lim J, Kang S. Microstructures and properties of ultrafine grained W–ZrC composites. J Alloys Compd. 2015;623:282.

    Article  CAS  Google Scholar 

  11. Wang S, Sun C, Guo W, Ge C, Yan Q, Zhou Q, Chen P, Chen Z. Modifying the properties of tungsten based plasma facing materials with single-wall carbon nanotubes. J Mater Sci Technol. 2013;29(10):919.

    Article  Google Scholar 

  12. Zhu W, Yang J, Cao J, Huang L, Xi Y, Nie Z. Plasticity and microstructure evolution of W–CeO2 rods with different short-duration pulse currents. Rare Met. 2017;36(12):981.

    Article  CAS  Google Scholar 

  13. Dias M, Guerreiro F, Correia JB, Galatanu A, Rosiński M, Monge MA, Munoz A, Alves E, Carvalho PA. Consolidation of W–Ta composites: hot isostatic pressing and spark and pulse plasma sintering. Fusion Eng Des. 2015;98–99:1950.

    Article  Google Scholar 

  14. Muñoz A, Savoini B, Tejado E, Monge MA, Pastor JY, Pareja R. Microstructural and mechanical characteristics of W–2Ti and W–1TiC processed by hot isostatic pressing. J Nucl Mater. 2014;455(1–3):306.

    Article  Google Scholar 

  15. Matsui I, Takigawa Y, Uesugi T, Higashi K. Effect of additives on tensile properties of bulk nanocrystalline Ni–W alloys electrodeposited from a sulfamate bath. Mater Lett. 2013;99:65.

    Article  CAS  Google Scholar 

  16. El-Atwani O, Hinks JA, Greaves G, Gonderman S, Qiu T, Efe M, Allain JP. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments. Sci Rep. 2014;4:4716.

    Article  CAS  Google Scholar 

  17. He G, Xu K, Guo S, Qian X, Yang Z, Liu G, Li J. Preparation of tungsten fiber reinforced-tungsten/copper composite for plasma facing component. J Nucl Mater. 2014;455(1–3):225.

    Article  CAS  Google Scholar 

  18. Launey ME, Munch E, Alsem DH, Saiz E, Tomsia AP, Ritchie RO. A novel biomimetic approach to the design of high-performance ceramic–metal composites. J R Soc Interface. 2010;7(46):741.

    Article  CAS  Google Scholar 

  19. Xiang L, Cheng L, Shi L, Yin X, Zhang L. Mechanical and ablation properties of laminated ZrB2–SiC/BN ceramics. J Alloys Compd. 2015;638:261.

    Article  CAS  Google Scholar 

  20. Du J, Höschen T, Rasinski M, You JH. Interfacial fracture behavior of tungsten wire/tungsten matrix composites with copper-coated interfaces. Mater Sci Eng A. 2010;527(6):1623.

    Article  Google Scholar 

  21. Du J, Höschen T, Rasinski M, You JH. Shear debonding behavior of a carbon-coated interface in a tungsten fiber-reinforced tungsten matrix composite. J Nucl Mater. 2011;417(1–3):472.

    Article  CAS  Google Scholar 

  22. Du J, Höschen T, Rasinski M, Wurster S, Grosinger W, You JH. Feasibility study of a tungsten wire-reinforced tungsten matrix composite with ZrOx interfacial coatings. Compos Sci Technol. 2010;70(10):1482.

    Article  CAS  Google Scholar 

  23. Du J, You J-H, Höschen T. Thermal stability of the engineered interfaces in Wf/W composites. J Mater Sci. 2012;47(11):4706.

    Article  CAS  Google Scholar 

  24. Gladczuk L, Patel A, Singh Paur C, Sosnowski M. Tantalum films for protective coatings of steel. Thin Solid Films. 2004;467(1–2):150.

    Article  CAS  Google Scholar 

  25. Gladczuk L, Patel A, Demaree JD, Sosnowski M. Sputter deposition of bcc tantalum films with TaN underlayers for protection of steel. Thin Solid Films. 2005;476(2):295.

    Article  CAS  Google Scholar 

  26. Zhang Y, Ouyang T, Liu D, Wang Y, Du J, Zhang C, Feng S, Suo J. Effect of thickness ratio on toughening mechanisms of Ta/W multilayers. J Alloys Compd. 2016;666:30.

    Article  CAS  Google Scholar 

  27. Xi Y, Fan H, Liu W. The effect of annealing treatment on microstructure and properties of TiN films prepared by unbalanced magnetron sputtering. J Alloys Compd. 2010;496(1–2):695.

    Article  CAS  Google Scholar 

  28. Nishikiori T, Nohira T, Ito Y. Hydrogen impermeability of TiN films and its dependence on nitrogen concentration at high temperatures. J Electrochem Soc. 2001;148(1):E52.

    Article  CAS  Google Scholar 

  29. Hwu KL, Derby B. Fracture of metal/ceramic laminates—I. Transition from single to multiple cracking. Acta Mater. 1999;47(2):529.

    Article  CAS  Google Scholar 

  30. Wurster S, Gludovatz B, Hoffmann A, Pippan R. Fracture behaviour of tungsten–vanadium and tungsten–tantalum alloys and composites. J Nucl Mater. 2011;413(3):166.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Magnetic Confinement Fusion Program (No. 2013GB110005) and the Natural Science Foundation of China Program (No. 51571095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Ping Suo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, GY., Zhou, T., Zhang, Y. et al. Bending mechanical properties of W/TiN/Ta composites with interfacial TiN coatings. Rare Met. 42, 1718–1723 (2023). https://doi.org/10.1007/s12598-018-1114-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1114-y

Keywords

Navigation