Skip to main content

Advertisement

Log in

Creep property and microstructural evolution of DD11 alloy under high temperature and low stress

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, the interrupted and ruptured creep tests were carried out in a novel second generation single crystal superalloy named DD11 at 1100 °C/130 MPa. The alloy exhibited typical creep curve including primary, steady, and tertiary three creep stages. The microstructural evolution at different stages of the creep were analyzed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that the γ′ phases transform into rafted structure at the early stage of the steady creep and keep stable during the steady creep stage. As the creep goes on, the rafted structure further coarsens and the topological inversion occurs. In addition, at the primary creep, the dislocations mainly move in the γ matrix and pile up in the γ/γ′ interface since the matrix channels widen slightly. The formation of the regular interfacial dislocation networks occurs at the early stage of the steady creep. Under the low stress, the dominated deformation mechanism during steady creep stage is the climbing of the 〈010〉 type edge dislocation. Furthermore, the effect of the deformation mechanism on creep property was discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Caron P, Khan T. Evolution of Ni-based superalloys for single crystal gas turbine blade applications. Aerosp Sci Technol. 1999;3(8):513.

    Article  Google Scholar 

  2. Walston S, Cetel A, Mackay R, Ohara K, Duhl D, Dreshfield R. Joint development of a fourth generation single crystal superalloy. In: Proceedings of Superalloys. Seven Springs; 2004. 15.

  3. Reed RC. The Superalloys: Fundamentals and Applications. New York: Cambridge University Press; 2006. 121.

    Google Scholar 

  4. Miura N, Nakata K, Miyazaki M, Hayashi Y, Kondo Y. Morphology of γ′ precipitates in second stage high pressure turbine blade of single crystal nickel-based superalloy after serviced. Mater Sci Forum. 2010;638–642:2291.

    Article  Google Scholar 

  5. Lv X, Sun F, Tong JY, Zhang S, Feng Q, Zhang JX. Dislocation Configurations and stress distribution along the transverse axis of turbine blade body. J Mater Eng Perform. 2015;24(12):4620.

    Article  CAS  Google Scholar 

  6. Miura N, Kondo Y. Morphology of γ′ precipitates in a first stage low pressure turbine blade of a Ni-based superalloy after service and after following aging. J ASTM Int. 2011;9(2):1.

    Google Scholar 

  7. Sluytman JSV, Pollock TM. Optimal precipitate shapes in nickel-base γ–γ′ alloys. Acta Mater. 2012;60(4):1771.

    Article  Google Scholar 

  8. Link T, Feller-Kniepmeier M. Shear mechanisms of the γ′ phase in single-crystal superalloys and their relation to creep. Metall Trans A. 1992;23(1):99.

    Article  Google Scholar 

  9. Leverant GR, Kear BH, Oblak JM. Creep of precipitation-hardened nickel-base alloy single crystals at high temperatures. Metall Trans. 1973;4(1):355.

    Article  CAS  Google Scholar 

  10. Wang X, Liu J, Jin T, Sun X, Zhou Y, Hu Z, Do J, Choi B, Kim I, Jo C. Creep deformation related to dislocations cutting the γ′ phase of a Ni-base single crystal superalloy. Mater Sci Eng A. 2015;626:406.

    Article  CAS  Google Scholar 

  11. Chen Q, Knowles D. Mechanism of 〈112〉/3 slip initiation and anisotropy of γ′ phase in CMSX-4 during creep at 750 °C and 750 MPa. Mater Sci Eng A. 2003;356(1):352.

    Article  Google Scholar 

  12. Kostka A, Mälzer G, Eggeler G, Dlouhy A, Reese S, Mack T. L12-phase cutting during high temperature and low stress creep of a Re-containing Ni-base single crystal superalloy. J Mater Sci. 2007;42(11):3951.

    Article  CAS  Google Scholar 

  13. Rae CMF, Reed RC. Primary creep in single crystal superalloys: origins, mechanisms and effects. Acta Mater. 2007;55(3):1067.

    Article  CAS  Google Scholar 

  14. Carry C, Strudel J. Apparent and effective creep parameters in single crystals of a nickel base superalloy-II. Secondary creep. Acta Metall. 1978;26(5):859.

    Article  CAS  Google Scholar 

  15. Wen ZX, Zhang DX, Li SW, Yue ZF, Gao JY. Anisotropic creep damage and fracture mechanism of nickel-base single crystal superalloy under multiaxial stress. J Alloys Compd. 2016;692:301.

    Article  Google Scholar 

  16. Diologent F, Caron P. On the creep behavior at 1033 K of new generation single-crystal superalloys. Mater Sci Eng A. 2004;385(1):245.

    Article  Google Scholar 

  17. Nabarro FRN. Rafting in superalloys. Metall Mater Trans A. 1996;27(3):513.

    Article  Google Scholar 

  18. Tinga T, Brekelmans WAM, Geers MGD. Directional coarsening in nickel-base superalloys and its effect on the mechanical properties. Comput Mater Sci. 2009;47(2):471.

    Article  CAS  Google Scholar 

  19. Matan N, Cox DC, Rae CMF, Reed RC. On the kinetics of rafting in CMSX-4 superalloy single crystals. Acta Mater. 1999;47(7):2031.

    Article  CAS  Google Scholar 

  20. Pollock TM, Argon AS. Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates. Acta Metall Mater. 1994;42(6):1859.

    Article  CAS  Google Scholar 

  21. Kamaraj M. Rafting in single crystal nickel-base superalloys—an overview. Sadhana. 2003;28(1–2):115.

    Article  CAS  Google Scholar 

  22. Mackay RA, Ebert LJ. The development of γ–γ′ lamellar structures in a nickel-base superalloy during elevated temperature mechanical testing. Metall Trans A. 1985;16(11):1969.

    Article  Google Scholar 

  23. Zhu Z, Basoalto H, Warnken N, Reed RC. A model for the creep deformation behaviour of nickel-based single crystal superalloys. Acta Mater. 2012;60(12):4888.

    Article  CAS  Google Scholar 

  24. Epishin A, Link T. Mechanisms of high-temperature creep of nickel-based superalloys under low applied stresses. Philos Mag. 2004;84(19):1979.

    Article  CAS  Google Scholar 

  25. Sarosi PM, Srinivasan R, Eggeler GF, Nathal MM, Mills MJ. Observations of a 〈010〉 dislocations during the high-temperature creep of Ni-based superalloy single crystals deformed along the [001] orientation. Acta Mater. 2007;55(7):2509.

    Article  CAS  Google Scholar 

  26. Tian SG, Su Y, Qian B, Yu X, Liang F, Li A. Creep behavior of a single crystal nickel-based superalloy containing 4.2% Re. Mater Des. 2012;37(10):236.

    Article  CAS  Google Scholar 

  27. Zhang JX, Murakumo T, Koizumi Y, Kobayashi T, Harada H. Slip geometry of dislocations related to cutting of the γ′ phase in a new generation single-crystal superalloy. Acta Mater. 2003;51(17):5073.

    Article  CAS  Google Scholar 

  28. Murakumo T, Kobayashi T, Koizumi Y, Harada H. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction. Acta Mater. 2004;52(12):3737.

    Article  CAS  Google Scholar 

  29. Zhang JX, Murakumo T, Harada H, Koizumi Y. Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scr Mater. 2003;48(3):287.

    Article  CAS  Google Scholar 

  30. Gabb T, Draper S, Hull D, MacKay R, Nathal M. The role of interfacial dislocation networks in high temperature creep of superalloys. Mater Sci Eng A. 1989;118:59.

    Article  Google Scholar 

  31. Su GT, Zhou HH, Zhang JH, Yang HC, Xu YB, Hu ZQ. Formation and role of dislocation networks during high temperature creep of a single crystal nickel-base superalloy. Mater Sci Eng A. 2000;279:160.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51471014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Bo Sha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YF., Sha, JB., Zhao, YS. et al. Creep property and microstructural evolution of DD11 alloy under high temperature and low stress. Rare Met. 43, 810–816 (2024). https://doi.org/10.1007/s12598-018-1098-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1098-7

Keywords

Navigation