Skip to main content

Advertisement

Log in

Microstructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760 °C/850 MPa

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of Mo and Al addition on the microstructure as well as creep rupture properties at 760 °C/850 MPa was investigated by transmission electron microscopy (TEM) in a Ni-based single-crystal (SC) alloy with the composition of Ni–6.5Al–8.0Mo–2.4Cr–6.2Ta–4.9Co–1.5Re–(0.01–0.05)Y (wt%). The microstructure analysis shows that 0.5 wt% Al addition induces rapid decrease in creep rupture life, and this can be attributed to the formation of dense stacking faults cutting into γ′ precipitates, which can be explained by the increase in Orowan stress caused by the narrower γ channel width and the decrease in stacking faults energy. Besides, 1.5 wt% Mo addition increases the anti-phase boundary energy and decreases the stacking faults energy, resulting in fewer stacking faults and thus a slight decrease in the creep rupture life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Reed RC. The Superalloys: Fundamentals and Applications. Cambridge: Cambridge University Press; 2008. 2.

    Google Scholar 

  2. Heckl A, Neumeier S, Göken M, Singer RF. The effect of Re and Ru on γ/γ′ microstructure, γ-solid solution strengthening and creep strength in nickel-base superalloys. Mater Sci Eng A. 2011;528(9):3435.

    Article  Google Scholar 

  3. Yeh AC, Tin S. Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scr Mater. 2005;52(6):519.

    Article  CAS  Google Scholar 

  4. Ma S, Carroll L, Pollock TM. Development of γ phase stacking faults during high temperature creep of Ru-containing single crystal superalloys. Acta Mater. 2007;55(17):5802.

    Article  CAS  Google Scholar 

  5. Reed RC, Tao T, Warnken N. Alloys-by-design: application to nickel-based single crystal superalloys. Acta Mater. 2009;57(19):5898.

    Article  CAS  Google Scholar 

  6. Kondo Y, Kubo Y, Miura N, Murata Y, Yoshinari A. Creep properties of a new Re free single crystal Ni-based superalloy. MATEC Web Conf. 2014;14:20003.

    Article  Google Scholar 

  7. Mottura A, Reed RC. What is the role of rhenium in single crystal superalloys. MATEC Web Conf. 2014;14:01001.

    Article  Google Scholar 

  8. MacKay RA, Gabb TP, Smialek JL, Nathal MV. A new approach of designing superalloys for low density. JOM. 2010;62(1):48.

    Article  CAS  Google Scholar 

  9. Zhao H, Li S, Pei YL, Gong SK, Xu HB. Microstructure and mechanical properties of Ni3Al-based single crystal alloy IC21. Acta Metall Sin. 2015;51(10):1279.

    CAS  Google Scholar 

  10. Agudo JL, Eggeler G, Dlouhý A. Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials. Ultramicroscopy. 2012;122(11):48.

    Article  Google Scholar 

  11. Wu X, Wollgramm P, Somsen C, Dlouhy A, Kostka A, Eggeler G. Double minimum creep of single crystal Ni-base superalloys. Acta Mater. 2016;112:242.

    Article  CAS  Google Scholar 

  12. Liang Y, Li S, Ai C, Han Y, Gong SK. Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy. Prog Nat Sci Mater Int. 2016;26(1):112.

    Article  CAS  Google Scholar 

  13. Harada H, Yamazaki M, Koizumi Y, Sakuma N, Furuya N, Kamiya H. Alloy design for nickel-base superalloys. In: Brunetaud R, Coutsouradis D, Gibbons TB, Lindblom Y, Meadowcroft DB, Stickler R, editors. High Temperature Alloys for Gas Turbines. Berlin: Springer; 1982. 721.

    Google Scholar 

  14. Ro Y, Koizumi Y, Harada H. High temperature tensile properties of a series of nickel-base superalloys on a γ/γ′ tie line. Mater Sci Eng A. 1997;223(4):59.

    Article  Google Scholar 

  15. Murakumo T, Kobayashi T, Koizumi Y, Harada H. Creep behaviour of Ni-base single-crystal superalloys with various γ′ volume fraction. Acta Mater. 2004;52(12):3737.

    Article  CAS  Google Scholar 

  16. Cottrell AH, Seeger A, Amorós JL. Dislocations in crystals. In: Grammel R, editor. Deformation and Flow of Solids. Berlin: Springer; 1956. 33.

    Google Scholar 

  17. Yuan Y, Kawagishi K, Koizumi Y, Kobayashi T, Yokokawa T, Harada H. Creep deformation of a sixth generation Ni-base single crystal superalloy at 800 °C. Mater Sci Eng A. 2014;608:95.

    Article  CAS  Google Scholar 

  18. Kear BH, Oblak JM, Giamei AF. Stacking faults in gamma prime Ni3(Al, Ti) precipitation hardened nickel-base alloys. Metall Mater Trans B. 1970;1(9):2477.

    Article  CAS  Google Scholar 

  19. Diologent F, Caron P. On the creep behavior at 1033 K of new generation single-crystal superalloys. Mater Sci Eng A. 2004;385(1):245.

    Article  Google Scholar 

  20. Leverant GR, Kear BH, Oblak JM. Creep of precipitation-hardened nickel-base alloy single crystals at high temperatures. Metall Mater Trans B. 1973;4(1):355.

    Article  CAS  Google Scholar 

  21. Rae CMF, Matan N, Reed RC. The role of stacking fault shear in the primary creep of [001]-oriented single crystal superalloys at 750 °C and 750 MPa. Mater Sci Eng A. 2001;300(1):125.

    Article  Google Scholar 

  22. Vorontsov VA, Kovarik L, Mills MJ, Rae CMF. High resolution electron microscopy of dislocation ribbons in a CMSX-4 superalloy single crystal. Acta Mater. 2012;60(12):4866.

    Article  CAS  Google Scholar 

  23. Rae CMF, Reed RC. Primary creep in single crystal superalloys: origins, mechanisms and effects. Acta Mater. 2007;55(3):1067.

    Article  CAS  Google Scholar 

  24. Pollock TM, Field RD. Dislocations and high-temperature plastic deformation of superalloy single crystals. In: Nabarro FRN, Duesbery MS, editors. Dislocations in Solids. Amsterdam: Elsevier Sciences; 2002. 547.

    Chapter  Google Scholar 

  25. Matan N, Cox DC, Carter P, Rist MA, Rae CMF, Reed RC. Creep of CMSX-4 superalloy single crystals: effects of misorientation and temperature. Acta Mater. 1999;47(5):1549.

    Article  CAS  Google Scholar 

  26. Abel CA. The physics of creep. Mater Des. 1996;17(1):53.

    Article  Google Scholar 

  27. Kear BH, Giamei AF, Leverant GR, Oblak JM. On intrinsic/extrinsic stacking fault pairs in the Ll2 lattice. Scr Metall. 1969;3(2):123.

    Article  CAS  Google Scholar 

  28. Condat M, Décamps B. Shearing of γ′ precipitates by single a/2<110> matrix dislocations in a γ/γ′ Ni-based superalloy. Scr Metall. 1987;21(5):607.

    Article  CAS  Google Scholar 

  29. Décamps B, Morton AJ, Condat M. On the mechanism of shear of γ′ precipitates by single (a/2)<110> dissociated matrix dislocations in Ni-based superalloys. Philos Mag A. 1991;64(3):641.

    Article  Google Scholar 

  30. Rae CMF, Rist MA, Cox DC, Reed RC, Matan N. On the primary creep of CMSX-4 superalloy single crystals. Metall Mater Trans A. 2000;31(9):2219.

    Article  Google Scholar 

  31. Pollock TM, Argon AS. Creep resistance of CMSX-3 nickel base superalloy single crystals. Acta Metall Mater. 1992;40(1):1.

    Article  CAS  Google Scholar 

  32. Gypen LA, Deruyttere A. Multi-component solid solution hardening. J Mater Sci. 1977;12(5):1034.

    Article  CAS  Google Scholar 

  33. Roth HA, Davis CL, Thomson RC. Modeling solid solution strengthening in nickel alloys. Metall Mater Trans A. 1997;28(6):1329.

    Article  Google Scholar 

  34. Mishima Y, Ochiai S, Hamao N, Yodogawa M, Suzuki T. Solid solution hardening of nickel role of transition metal and B-subgroup solute. Trans Jpn Inst Metals. 1986;27(9):656.

    Article  CAS  Google Scholar 

  35. Veyssière P, Saada G. Microscopy and plasticity of the L12 γ phase. In: Nabarro FRN, Duesbery MS, editors. Dislocations in Solids. Amsterdam: Elsevier Sciences; 1996. 253.

    Google Scholar 

  36. Sondhi SK, Chandran M. First-principle calculation of APB energy in Ni-based binary and ternary alloys. Modell Simul Mater Sci Eng. 2011;19(2):7.

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51101004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, PS., Wang, H., Ru, Y. et al. Microstructure and creep properties of Ni-based single-crystal superalloys with Mo/Al addition at 760 °C/850 MPa. Rare Met. 42, 3806–3813 (2023). https://doi.org/10.1007/s12598-018-1094-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1094-y

Keywords

Navigation