Skip to main content
Log in

Adsorption and desorption properties for rhenium using a kind of weak-base anion resin

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In this paper, a weak-base resin was adopted to recycle rhenium because of its excellent adsorption and desorption properties for rhenium, while the kinetics and thermodynamics properties of adsorbing rhenium from the rhenium stock solution were systematically investigated. The kinetics investigations confirm that the adsorption process of Re belongs to kinetic control by particle diffusion process and the corresponding reaction rate constant is 2.68 × 10−3 s−1. Then, the Langmuir and Freundlich models were used to describe the adsorption equilibrium behaviors of Re and the thermodynamics parameters are obtained. The results show that the Langmuir model is the best-fitted model, and the Gibbs free energy change of Re adsorption onto ZS15 weak-base resin is ∆G0 = − 10.59 + 12.66T. To verify the weak-base resins for extracting rhenium in industrial application, the column experiments were operated in the spray solution generating by roasting the molybdenum concentrates. The results indicate that the weak-base resins possess excellent adsorptive selectivity for rhenium, and the ammonia solution with low concentration could sufficiently desorb rhenium from the resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Huang M, Zhu J. An overview of rhenium effect in single-crystal superalloys. Rare Met. 2016;35(2):502.

    Article  Google Scholar 

  2. Abisheva ZS, Zagorodnyaya AN. Hydrometallurgy in rare metal production technology in Kazakhstan. Hydrometallurgy. 2002;63(1):55.

    Article  Google Scholar 

  3. Liu EZ, Guan XR, Zheng Z. Effect of rhenium on solidification and segregation of nickel-based superalloy. Rare Met. 2011;30(1):320.

    Article  Google Scholar 

  4. Giamei AF, Anton DL. Rhenium additions to a Ni-base superalloy: effects on microstructure. Metall Trans A. 1985;16(11):1997.

    Article  Google Scholar 

  5. Huang C, Chen QS, Li Y, Liu QY. Discussion of world and China rhenium resource demand in 2030. China Min Mag. 2014;23(9):9.

    Google Scholar 

  6. Lan X, Liang S, Song Y. Recovery of rhenium from molybdenite calcine by a resin-in-pulp process. Hydrometallurgy. 2006;82(3–4):133.

    Article  Google Scholar 

  7. Anderson CD, Taylor PR, Anderson CG. Extractive metallurgy of rhenium: a review. Miner Metall Process. 2013;30(1):59.

    Google Scholar 

  8. Abisheva ZS, Zagorodnyaya AN, Bekturganov NS. Review of technologies for rhenium recovery from mineral raw materials in Kazakhstan. Hydrometallurgy. 2011;109(1):1.

    Article  Google Scholar 

  9. Gode F, Pehlivan E. A comparative study of two chelating ion-exchange resins for the removal of chromium (III) from aqueous solution. J Hazard Mater. 2003;100(1–3):231.

    Article  Google Scholar 

  10. Kholmogorov AG, Kononova ON, Kachin SV, Ilyichev SN, Kryuchkov VV, Kalyakina OP, Pashkov GL. Ion exchange recovery and concentration of rhenium from salt solution. Hydrometallurgy. 1999;51(1):19.

    Article  Google Scholar 

  11. Zou ZQ, Zhou QJ. Recovery of molybdenum and rhenium from molybdenite concentrate in Dexing copper ore by lime roasting-N235 extraction method. Min Metall Eng. 2002;22(2):79.

    Google Scholar 

  12. Cao ZF, Zhong H, Qiu ZH. Solvent extraction of rhenium from molybdenum in alkaline solution. Hydrometallurgy. 2009;97(3–4):153.

    Google Scholar 

  13. Gerhardt NI, Palant AA, Dungan SR. Extraction of tungsten (VI), molybdenum (VI) and rhenium (VII) by diisododecylamine. Hydrometallurgy. 2000;55(1):1.

    Article  Google Scholar 

  14. Lou ZN, Li YE, Ren FQ, Zhang Q, Wan L, Xing ZQ, Zang SL, Xiong Y. Selectivity recovery of molybdenum (VI) from rhenium (VII) by amine-modified persimmon waste. Rare Met. 2016;35(6):502.

    Article  Google Scholar 

  15. Gerhardt NI, Palant AA, Petrova VA, Tagirov RK. Solvent extraction of molybdenum (VI), tungsten (VI) and rhenium (VII) by diisododecylamine from leach liquors. Hydrometallurgy. 2001;60(1):1.

    Article  Google Scholar 

  16. Mozammel M, Sadrnezhaad SK, Badami E, Ahmadi E. Break-through curves for adsorption and elution of rhenium in a column ion exchange system. Hydrometallurgy. 2007;85(1):17.

    Article  Google Scholar 

  17. Liu Y, Deng L, Liu L, Zhou YZ, Chang YL. Adsorption of Re from electrolyte of superalloy by using D296 resin. Chin J Rare Met. 2017;41(6):678.

    Google Scholar 

  18. Shariat MH, Hassani M. Rhenium recovery from Sarcheshmeh molybdnite concentrate. J Mater Process Technol. 1998;74(1–3):243.

    Article  Google Scholar 

  19. Xiong CH, Yao CP, Wu XM. Adsorption of rhenium (VII) on 4-amino-1,2,4-triazone resin. Hydrometallurgy. 2008;90(2–4):221.

    Article  Google Scholar 

  20. Zagorodnyaya AN, Abisheva ZS, Sharipova AS, Sasykanova SE, Bochevskaya YG, Atanova OV. Sorption of rhenium and uranium by strong base anion exchange resin from solutions with different anion compositions. Hydrometallurgy. 2013;131–132(s 131–132):127.

    Article  Google Scholar 

  21. Xiong CH, Yao CP, Wu XM. Adsorption of rhenium(VII) on 4-amino-1,2,4-triazole resin. Hydrometallurgy. 2008;90(2–4):221.

    Article  Google Scholar 

  22. Liu HZ, Wang LJ, Zhang B, Wang W. Static adsorption properties of a kind of weak anion ion resin for rhenium in spraying water. Chinese Journal of Rare Metals. 2017;41(9):1028.

    Google Scholar 

  23. Jiang KX, Deng GC, Zhang Q, Zhang J, Zhai YC. Experi-mental research on the static separation of rhenium from molybdenum with D314 resin. Rare Met Cem Carbides. 2011;39(1):8.

    Google Scholar 

  24. He HJ, Wang XS, Yang ZC. Separation of Re(VII) and Mo(VI) by D301 macroporous weakly basic resin. Uranium Min Metall. 1990;9(1):37.

    Google Scholar 

  25. Zhao Z, Li XB, Zhao QJ. Kinetics research on recovery of vanadium from Bayer process by ion exchange with resin. Chin J Process Eng. 2009;9(3):462.

    Google Scholar 

  26. Zhao ZW, Xu XY, Chen XY, Huo GS, Chen AL, Liu XH, Xu H. Thermodynamics and kinetics of adsorption of molybdenum blue with D301 ion exchange resin. Trans Nonferrous Metals Soc China. 2012;22(3):686.

    Article  Google Scholar 

  27. Song X, Du H, Liu S, Qian H. Adsorption properties of Ni(II) by D301R anion exchange resin. J Chem. 2014;2014(5–6):1.

    Google Scholar 

  28. Xiong Y, Xu J, Shan WJ, Lou ZN, Fang DW, Zang SL, Han GX. A new approach for rhenium (VII) recovery by using modified brown algae laminaria japonica adsorbent. Biores Technol. 2013;127(1):464.

    Article  Google Scholar 

  29. Zhou YX, Lei P, Fei YQ, Pan Q, Liu Y. Thermodynamics and kinetics of ion exchange resin adsorption iron ions of dilute sulfuric acid. J Wuhan Inst Technol. 2012;34(9):9.

    Google Scholar 

  30. Zhao ZW, Xu XY, Chen XY, Huo GS, Chen AL, Liu XH, Xu H. Thermodynamics and kinetics of adsorption of molybdenum blue with D301 ion exchange resin. Trans Nonferrous Met Soc China. 2012;22(3):686.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51404220 and 51504225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HZ., Zhang, B., Jing, XJ. et al. Adsorption and desorption properties for rhenium using a kind of weak-base anion resin. Rare Met. 37, 707–715 (2018). https://doi.org/10.1007/s12598-018-1077-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1077-z

Keywords

Navigation