Skip to main content
Log in

Interface evolution of Cu–Ni–Si/Al–Mg–Si clad composite wires after annealing

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Interface microstructures of Cu–Ni–Si/Al–Mg–Si clad composite wires during isothermal annealing from 623 to 773 K were investigated. The composite wires were fabricated by a drawing process. The evolution of intermetallic compounds (IMCs) was analyzed. A continuous IMCs layer forms only after annealing for 1 min, which may be due to more IMCs nucleation points generated by deep drawing process. IMCs consist of Al4Cu9, AlCu and Al2Cu identified by energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). The growth activation energies of total IMCs, Al2Cu, AlCu and Al4Cu9, are 98.8, 69.4, 101.3 and 137.1 kJ·mol−1, respectively. The higher growth activation energy of Al4Cu9 results in the higher growth rate under high temperature. However, the average interdiffusion coefficient for each IMC calculated by Wagner method shows that interdiffusion in Al2Cu and AlCu is more active than that in Al4Cu9. The higher growth rate of Al4Cu9 may be caused by the long concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gueydan A, Domenges B, Hug E. Study of the intermetallic growth in copper-clad aluminum wires after thermal aging. Intermetallics. 2014;50:34.

    Article  CAS  Google Scholar 

  2. Ahmed N. Extrusion of copper clad aluminum wire. J Mech Work Technol. 1978;2(1):19.

    Article  CAS  Google Scholar 

  3. Sapanathan T, Khoddam S, Zahiri SH. Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: a study of bond strength and interfacial characteristics. J Alloys Compd. 2013;571:85.

    Article  CAS  Google Scholar 

  4. Khosravifard A. Investigation of parameters affecting interface strength in Al/Cu clad bimetal rod extrusion process. Mater Des. 2010;31(1):493.

    Article  CAS  Google Scholar 

  5. Li X, Zu G, Ding M, Mu Y, Wang P. Interfacial microstructure and mechanical properties of Cu/Al clad sheet fabricated by asymmetrical roll bonding and annealing. Mater Sci Eng, A. 2011;529:485.

    Article  CAS  Google Scholar 

  6. Rhee KY, Han WY, Park HJ, Kim SS. Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics. Mater Sci Eng, A. 2004;384(1–2):70.

    Article  CAS  Google Scholar 

  7. Kang CG, Jung YJ, Kwon HC. Finite element simulation of die design for hot extrusion process of Al/Cu clad composite and its experimental investigation. J Mater Process Tech. 2002;124(1):49.

    Article  CAS  Google Scholar 

  8. Ouyang J, Yarrapareddy E, Kovacevic R. Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mater Process Technol. 2006;172(1):110.

    Article  CAS  Google Scholar 

  9. Sasaki TT, Morris RA, Thompson GB, Syarif Y, Fox D. Formation of ultra-fine copper grains in copper-clad aluminum wire. Scripta Material. 2010;63(5):488.

    Article  CAS  Google Scholar 

  10. Wang QN, Liu XH, Liu XF, Xie JX. Study on annealing process and microstructure and properties of cold-drawing copper cladding aluminum thin wires. J Mater Eng. 2008;7:30.

    Google Scholar 

  11. Lee S, Lee M, Lee S, Kim Y, Lee J, Bae D. Effect of bonding interface on delamination behavior of drawn Cu/Al bar clad material. Trans Nonferrous Metals Soc China. 2012;22(S3):645.

    Article  CAS  Google Scholar 

  12. Tan YY, Yang QL, Sim KS, Sun LT, Wu X. Cu-Al intermetallic compound investigation using ex situ post annealing and in situ annealing. Microelectron Reliab. 2015;55(11):2316.

    Article  CAS  Google Scholar 

  13. Wei Y, Li J, Xiong J, Zhang F. Investigation of interdiffusion and intermetallic compounds in Al-Cu joint produced by continuous drive friction welding. Eng Sci Technol Int J. 2016;19(1):90.

    Google Scholar 

  14. Kim HG, Kim SM, Lee JY, Choi MR, Choe SH, Kim KH, Ryu JS, Kim S, Han SZ, Kim WY, Lim SH. Microstructural evaluation of interfacial intermetallic compounds in Cu wire bonding with Al and Au pads. Acta Mater. 2014;64:356.

    Article  CAS  Google Scholar 

  15. Abbasi M, Karimi TA, Salehi MT. Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process. J Alloys Compd. 2001;319(1):233.

    Article  CAS  Google Scholar 

  16. Xu H, Liu C, Silberschmidt VV, Pramana SS, White TJ, Chen Z, Acoff VL. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds. Acta Mater. 2011;59(14):5661.

    Article  CAS  Google Scholar 

  17. Kouters M, Gubbels G, Dos SFO. Characterization of intermetallic compounds in Cu-Al ball bonds: mechanical properties, interface delamination and thermal conductivity. Microelectron Reliab. 2013;53(8):1068.

    Article  CAS  Google Scholar 

  18. Xu B, Tong WP, Liu CZ, Zhang H, Zuo L, He JC. Effect of high magnetic field on growth behavior of compound layers during reactive diffusion between solid Cu and liquid Al. J Mater Sci Technol. 2011;27(9):856.

    Article  Google Scholar 

  19. Zhao J, Jie J, Chen F, Chen H, Li T, Cao Z. Effect of immersion Ni plating on interface microstructure and mechanical properties of Al/Cu bimetal. Trans Nonferrous Metals Soc China. 2014;24(6):1659.

    Article  CAS  Google Scholar 

  20. Liu WC, Chen YH, Chung TY, Liu CY. Study of Al-Cu compounds as soldering bond pad for high-power device packaging. Microelectron Reliabil. 2015;55(12A):2549.

    Article  CAS  Google Scholar 

  21. Lee W, Bang K, Jung S. Effects of intermetallic compound on the electrical and mechanical properties of friction welded Cu/Al bimetallic joints during annealing. J Alloys Compd. 2005;390(1–2):212.

    Article  CAS  Google Scholar 

  22. Lim ABY, Long X, Shen L, Chen X, Ramanujan RV, Gan CL, Chen Z. Effect of palladium on the mechanical properties of Cu-Al intermetallic compounds. J Alloys Compd. 2015;628:107.

    Article  CAS  Google Scholar 

  23. Hug E, Bellido N. Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires. Mater Sci Eng, A. 2011;528(22):7103.

    Article  CAS  Google Scholar 

  24. Uscinowicz R. The effect of rolling direction on the creep process of Al–Cu bimetallic sheet. Mater Des. 2013;49:693.

    Article  CAS  Google Scholar 

  25. Honarpisheh M, Asemabadi M, Sedighi M. Investigation of annealing treatment on the interfacial properties of explosive-welded Al/Cu/Al multilayer. Mater Des. 2012;37:122.

    Article  CAS  Google Scholar 

  26. Funamizu Y, Watanabe K. Interdiffusion in the Al-Cu System. Mater Trans, JIM. 1971;12:147.

    Article  CAS  Google Scholar 

  27. Chen CY, Hwang WS. Effect of annealing on the interfacial structure of aluminum-copper joints. Mater Trans. 2007;7(48):1938.

    Article  CAS  Google Scholar 

  28. Gibbs GB. Diffusion layer growth in a binary system. J Nucl Mater. 1966;20(3):303.

    Article  CAS  Google Scholar 

  29. Guo YJ, Liu GW, Jin HY, Shi ZQ, Qiao GJ. Growth behavior of intermetallic phase at diffusion bonded interface between copper and aluminium foil. 2012;2:281.

    Google Scholar 

  30. Wang T, Cao F, Zhou P, Kang H, Chen Z, Fu Y, Xiao T, Huang W, Yuan Q. Study on diffusion behavior and microstructural evolution of Al/Cu bimetal interface by synchrotron X-ray radiography. J Alloys Compd. 2014;616:550.

    Article  CAS  Google Scholar 

  31. Wagner C. The evaluation of data obtained with diffusion couples of binary single-phase and multiphase systems. Acta Metall. 1969;17:99.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Plan (No. 2016YFB0301405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu-Jun Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Mi, XJ., Feng, X. et al. Interface evolution of Cu–Ni–Si/Al–Mg–Si clad composite wires after annealing. Rare Met. 39, 1419–1424 (2020). https://doi.org/10.1007/s12598-018-1073-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1073-3

Keywords

Navigation