Skip to main content
Log in

Amino-acids-functionalized M13-assisted synthesis of silver and silver sulfide nanoparticles

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bio-mineralization has been explored to synthesize nanomaterials with exquisite structures and amazing properties. Amino-acids-functionalized filamentous M13 virus was applied as a scaffold for the synthesis of silver and silver sulfide nanoparticles. It is interesting to find that the binding affinity between filamentous M13 virus and silver ions can be effectively improved after a friendly modification by amino acids. At the same time, amino-acids-modified filamentous M13 virus also serves as a dispersant to decrease the size and increase the stability of silver nanoparticles. Both silver and silver sulfide nanoparticles with monodispersed size and uniform morphology can be fabricated by the direction of amino-acid-modified filamentous M13 virus. The successful synthesis of silver sulfide nanoparticles on amino-acids-modified filamentous M13 virus suggests that this approach is highly efficient to fabricate not only metal nanoparticles, but also binary or multinary compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee SW, Mao C, Flynn CE, Belcher AM. Ordering of quantum dots using genetically engineered viruses. Science. 2002;296(5569):892.

    Article  CAS  Google Scholar 

  2. Zhou Y, Marson RL, van Anders G, Zhu J, Ma G, Ercius P, Sun K, Yeom B, Glotzer SC, Kotov NA. Biomimetic hierarchical assembly of helical supraparticles from chiral nanoparticles. ACS Nano. 2016;10(3):3248.

    Article  CAS  Google Scholar 

  3. Liu J, Zhang X, Yu M, Li S, Zhang J. Photoinduced silver nanoparticles/nanorings on plasmid DNA scaffolds. Small. 2012;8(2):310.

    Article  CAS  Google Scholar 

  4. Xie JP, Lee JY, Wang DIC, Ting YP. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 2007;1(5):429.

    Article  CAS  Google Scholar 

  5. Lee YM, Jung B, Kim YH, Park AR, Han S, Choe WS, Yoo PJ. Nanomesh-structured ultrathin membranes harnessing the unidirectional alignment of viruses on a graphene-oxide film. Adv Mater. 2014;26(23):3899.

    Article  CAS  Google Scholar 

  6. Li S, Qin G, Pei W, Zuo L. One pot preparation of plasmonic photocatalyst at low temperature. Rare Met. 2011;30(S1):157.

    Article  Google Scholar 

  7. Zhang X, Yu M, Liu J, Li S. Fabrication and characterization of Ag nanoparticles based on plasmid DNA as templates. Mater Lett. 2011;65(4):719.

    Article  CAS  Google Scholar 

  8. Liu J, Zhang X, Zhang J, Li S, Yu M. Synthesis and characterization of Ag–Ni nanorings based on plasmid DNA templates. Mater Lett. 2012;67(1):277.

    Article  CAS  Google Scholar 

  9. Xiang XZ, Gong WY, Kuang MS, Wang L. Progress in application and preparation of silver nanowires. Rare Met. 2016;35(4):289.

    Article  CAS  Google Scholar 

  10. Liu J, Zhang X, Li S, Yu M. Microwave absorption properties of rod-shaped Co–Ni–P shells prepared by metallizing Bacillus. Appl Surf Sci. 2011;257(6):2383.

    Article  CAS  Google Scholar 

  11. Zhang X, Liu J, Li S. Fabrication and magnetic properties of Co–Ni–P rod-shaped hollow structures based on Bacillus template. Mater Lett. 2009;63(22):1907.

    Article  CAS  Google Scholar 

  12. Bastings MM, Helms BA, van Baal I, Hackeng TM, Merkx M, Meijer EW. From phage display to dendrimer display: insights into multivalent binding. J Am Chem Soc. 2011;133(17):6636.

    Article  CAS  Google Scholar 

  13. Rong J, Lee LA, Li K, Harp B, Mello CM, Niu Z, Wang Q. Oriented cell growth on self-assembled bacteriophage M13 thin films. Chem Commun (Camb). 2008;41:5185.

    Article  Google Scholar 

  14. Moradi M, Li Z, Qi J, Xing W, Xiang K, Chiang YM, Belcher AM. Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. Nano Lett. 2015;15(5):2917.

    Article  CAS  Google Scholar 

  15. Chen PY, Dang X, Klug MT, Courchesne NMD, Qi J, Hyder MN, Belcher AM, Hammond PT. M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks. Chem Mater. 2015;27(5):1531.

    Article  Google Scholar 

  16. Huang Y, Chiang CY, Lee SK, Gao Y, Hu EL, Yoreo JD, Belcher AM. Programmable assembly of nanoarchitectures using genetically engineered viruses. Nano Lett. 2005;5(7):1429.

    Article  CAS  Google Scholar 

  17. Courchesne NM, Klug MT, Chen PY, Kooi SE, Yun DS, Hong N, Fang NX, Belcher AM, Hammond PT. Assembly of a bacteriophage-based template for the organization of materials into nanoporous networks. Adv Mater. 2014;26(21):3398.

    Article  CAS  Google Scholar 

  18. Li M, Pan Y, Guo X, Liang Y, Wu Y, Wen Y, Yang H. Pt/single-stranded DNA/graphene nanocomposite with improved catalytic activity and CO tolerance. J Mater Chem A. 2015;3(19):10353.

    Article  CAS  Google Scholar 

  19. Nuraje N, Lei Y, Belcher A. Virus-templated visible spectrum active perovskite photocatalyst. Catal Commun. 2014;44(1):68.

    Article  CAS  Google Scholar 

  20. Flynn CE, Lee S-W, Peelle BR, Belcher AM. Viruses as vehicles for growth, organization and assembly of materials. Acta Mater. 2003;51(19):5867.

    Article  CAS  Google Scholar 

  21. Park H, Heldman N, Rebentrost P, Abbondanza L, Iagatti A, Alessi A, Patrizi B, Salvalaggio M, Bussotti L, Mohseni M, Caruso F, Johnsen HC, Fusco R, Foggi P, Scudo PF, Lloyd S, Belcher AM. Enhanced energy transport in genetically engineered excitonic networks. Nat Mater. 2016;15(2):211.

    Article  CAS  Google Scholar 

  22. Moradi M, Li Z, Qi J, Xing W, Xiang K, Chiang YM, Belcher AM. Improving the capacity of sodium ion battery using a virus-templated nanostructured composite cathode. Nano Lett. 2015;15(5):2917.

    Article  CAS  Google Scholar 

  23. Neltner B, Peddie B, Xu A, Doenlen W, Durand K, Yun DS, Speakman S, Peterson A, Belcher A. Production of hydrogen using nanocrystalline protein-templated catalysts on M13 phage. Acs Nano. 2010;4(6):3227.

    Article  CAS  Google Scholar 

  24. Zhang S, Nakano K, Zhang SL, Yu HM. Synthesis of dispersive iron or iron-silver nanoparticles on engineered capsid pVIII of M13 virus with electronegative terminal peptides. J Nanopart Res. 2015;17(10):417.

    Article  Google Scholar 

  25. Liu Y, Ding D, Zhen Y, Guo R. Amino acid-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoclusters for sensitive and selective detection of copper ions and histidine. Biosens Bioelectron. 2017;92:140.

    Article  CAS  Google Scholar 

  26. Liu S, Holdrich M, Sievers-Engler A, Horak J, Lammerhofer M. Papain-functionalized gold nanoparticles as heterogeneous biocatalyst for bioanalysis and biopharmaceuticals analysis. Anal Chim Acta. 2017;963:33.

    Article  CAS  Google Scholar 

  27. Tsai H, Lin W, Chuang M, Lu Y, Fuh CB. Multifunctional nanoparticles for protein detections in thin channels. Biosens Bioelectron. 2017;90:153.

    Article  CAS  Google Scholar 

  28. Kuo WH, Chase HA. Exploiting the interactions between poly-histidine fusion tags and immobilized metal ions. Biot Lett. 2011;33(6):1075.

    Article  CAS  Google Scholar 

  29. Wen ZQ, Overman SA, Thomas GJ Jr. Structure and interactions of the single-stranded DNA genome of filamentous virus fd: investigation by ultraviolet resonance Raman spectroscopy. Biochemistry. 1997;36(25):7810.

    Article  CAS  Google Scholar 

  30. del Giacco T, Carlotti B, De Solis S, Barbafina A, Elisei F. Steady-state and time-resolved investigations of a crown thioether conjugated with methylacridinium and its complexes with metal ions. Phys Chem Chem Phys. 2011;13(6):2188.

    Article  Google Scholar 

  31. Hutschenreiter S, Neumann L, Radler U, Schmitt L, Tampe R. Metal-chelating amino acids as building blocks for synthetic receptors sensing metal ions and histidine-tagged proteins. ChemBioChem. 2003;4(12):1340.

    Article  CAS  Google Scholar 

  32. Kuroda K, Shibasaki S, Ueda M, Tanaka A. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biot. 2001;57(5–6):697.

    Article  CAS  Google Scholar 

  33. Orbaek AW, McHale MM, Barron AR. Synthesis and characterization of silver nanoparticles for an undergraduate laboratory. J Chem Educ. 2015;92(2):339.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant No. 51271012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song-Mei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Du, J., Li, SM. et al. Amino-acids-functionalized M13-assisted synthesis of silver and silver sulfide nanoparticles. Rare Met. 42, 3532–3536 (2023). https://doi.org/10.1007/s12598-018-1070-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1070-6

Keywords

Navigation