Skip to main content

Advertisement

Log in

Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Recently, rare-earth perovskite-type oxides with the general formula ABO3 (A rare earth element, B transition metal, O oxygen) are regarded as promising materials for Ni/oxide batteries due to their hydrogen storage ability. In the present study, the hydrogen storage properties of the rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 were evaluated in alkaline solution and at various temperatures. The hydrogen storage properties were investigated electrochemically by applying galvanostatic charge/discharge currents. Electrochemical pressure–composition–temperature isotherms were constructed using the Nernst equation. The exchange current density and proton hydrogen diffusion coefficient were calculated using linear polarization measurements and the potential-step method, respectively. Interestingly, the maximum hydrogen absorption capacity, re-calculated from the electrochemical capacity, is 1.72 wt% at 333 K and 6 mol·L−1 KOH. In addition, the hysteresis value, calculated from pressure–composition–temperature isotherms, was 429 J·mol−1 at 333 K, while the self-discharge rate was about 25% after 24-h storage at open circuit and at 333 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2015;7(1):19.

    CAS  Google Scholar 

  2. Chien TK, Chiou LY, Lee CC, Chuang YC, Ke SH, Sheu SS, Wu CI. An energy-efficient nonvolatile microprocessor considering software-hardware interaction for energy harvesting applications. In: VLSI Design, Automation and Test (VLSI-DAT) 2016 International Symposium on. Hsinchu, Taiwan; 2016. 1.

  3. Ouyang L, Huang J, Wang H, Liu J, Zhu M. Progress of hydrogen storage alloys for Ni–MH rechargeable power batteries in electric vehicles: a review. Mater Chem Phys. 2017;200:164.

    CAS  Google Scholar 

  4. Cao Z, Ouyang L, Li L, Lu Y, Wang H, Liu J, Tang R. Enhanced discharge capacity and cycling properties in high-samarium, praseodymium/neodymium-free, and low-cobalt A2B7 electrode materials for nickel-metal hydride battery. Int J Hydrogen Energy. 2015;40(1):451.

    CAS  Google Scholar 

  5. Ouyang LZ, Cao ZJ, Li LL, Wang H, Liu JW, Min D, Zhu M. Enhanced high-rate discharge properties of La11.3Mg6.0Sm7.4Ni61.0Co7.2Al7.1 with added graphene synthesized by plasma milling. Int J Hydrogen Energy. 2014;39(24):12765.

    CAS  Google Scholar 

  6. Divya KC, Østergaard J. Battery energy storage technology for power systems: an overview. Electr Power Syst Res. 2009;79(4):511.

    Google Scholar 

  7. Malhotra A, Battke B, Beuse M, Stephan A, Schmidt T. Use cases for stationary battery technologies: a review of the literature and existing projects. Renew Sustain Energy Rev. 2016;56:705.

    Google Scholar 

  8. Young KH, Ng KY, Bendersky LA. A technical report of the robust affordable next generation energy storage system-BASF program. Batteries. 2016;2(1):2.

    Google Scholar 

  9. Bertuol DA, Bernardes AM, Tenório JAS. Spent NiMH batteries: characterization and metal recovery through mechanical processing. J Power Sources. 2006;160(2):1465.

    CAS  Google Scholar 

  10. Al-Thyabat S, Nakamura T, Shibata E, Iizuka A. Adaptation of minerals processing operations for lithium-ion (LiBs) and nickel metal hydride (NiMH) batteries recycling: critical review. Miner Eng. 2013;45:4.

    CAS  Google Scholar 

  11. Young KH. Research in nickel/metal hydride batteries. Batteries. 2016;2(4):31.

    Google Scholar 

  12. Yartys V, Noréus D, Latroche M. Metal hydrides as negative electrode materials for Ni–MH batteries. Appl Phys A. 2016;122(1):43.

    Google Scholar 

  13. Chang S, Young KH, Nei J, Fierro C. Reviews on the US Patents regarding nickel/metal hydride batteries. Batteries. 2016;2(2):10.

    Google Scholar 

  14. Wang L, Young K, Nei J, Pawlik D, Ng KYS. Hydrogenation of AB5 and AB2 metal hydride alloys studied by in situ X-ray diffraction. J Alloy Compd. 2014;616:300.

    CAS  Google Scholar 

  15. Henao J, Martinez-Gomez L. On rare-earth perovskite-type negative electrodes in nickel–hydride (Ni/H) secondary batteries. Mater Renew Sustain Energy. 2017;6(2):7.

    Google Scholar 

  16. Aoki Y, Kobayashi S, Yamaguchi T, Tsuji E, Habazaki H, Yashiro K, Ohtsuka T. Electrochemical impedance spectroscopy of high-efficiency hydrogen membrane fuel cells based on sputter-deposited BaCe0.8Y0.2O3−δ thin films. J Phys Chem C. 2016;120(29):15976.

    CAS  Google Scholar 

  17. Zhang H, Yi J, Jiang X. Fast response, highly sensitive and selective mixed-potential H2 sensor based on (La, Sr)(Cr, Fe)O3-δ perovskite sensing electrode. ACS Appl Mater Interfaces. 2017;9(20):17218.

    CAS  Google Scholar 

  18. Zhu T, Fowler DE, Poeppelmeier KR, Han M, Barnett SA. Hydrogen oxidation mechanisms on perovskite solid oxide fuel cell anodes. J Electrochem Soc. 2016;163(8):F952.

    CAS  Google Scholar 

  19. Esaka T, Sakaguchi H, Kobayashi S. Hydrogen storage in proton-conductive perovskite-type oxides and their application to nickel–hydrogen batteries. Solid State Ionics. 2004;166(3):351.

    CAS  Google Scholar 

  20. Sakaguchi H, Hatakeyama K, Kobayashi SS, Esaka T. Hydrogenation characteristics of the proton conducting oxide–hydrogen storage alloy composite. Mater Res Bull. 2002;37(9):1547.

    CAS  Google Scholar 

  21. Wang Q, Deng G, Chen Z, Chen Y, Cheng N. Electrochemical hydrogen property improved in nano-structured perovskite oxide LaFeO3 for Ni/MH battery. J Appl Phys. 2013;113(5):053305-1.

    Google Scholar 

  22. Deng G, Chen Y, Tao M, Wu C, Shen X, Yang H. Electrochemical properties of La1−xSrxFeO3 (x = 0.2, 0.4) as negative electrode of Ni–MH batteries. Electrochim Acta. 2009;54(15):3910.

    CAS  Google Scholar 

  23. Lubini M, Chinarro E, Moreno B, de Sousa VC, Alves AK, Bergmann CP. Electrical properties of La0.6Sr0.4Co1–yFeyO3 (y = 0.2–1.0) fibers obtained by electrospinning. J Phys Chem C. 2015;120(1):64.

    Google Scholar 

  24. Feng F, Northwood DO. Self-discharge characteristics of a metal hydride electrode for Ni–MH rechargeable batteries. Int J Hydrogen Energy. 2005;30(12):1367.

    CAS  Google Scholar 

  25. Shang GY, Han SM, Hao JS, Liu Y, Zhu XL, Li Y, Xie DY. Study on self-discharge property of Nd0.88Mg0.12Ni3.10+x Al0.20 (x = 0.00, 0.10, 0.20, 0.30) hydrogen storage alloys. J Alloy Compd. 2010;493(1):573.

    CAS  Google Scholar 

  26. Goo NH, Lee KS. The electrochemical hydriding properties of Mg–Ni–Zr amorphous alloy. Int J Hydrogen Energy. 2002;27(4):433.

    CAS  Google Scholar 

  27. Wang CS, Wang XH, Lei YQ, Chen CP, Wang QD. A new method of determining the thermodynamic parameters of metal hydride electrode materials. Int J Hydrogen Energy. 1997;22(12):1117.

    CAS  Google Scholar 

  28. Song M, Chen Y, Tao M, Wu C, Zhu D, Yang H. Some factors affecting the electrochemical performances of LaCrO3 as negative electrodes for Ni/MH batteries. Electrochim Acta. 2010;55(9):3103.

    CAS  Google Scholar 

  29. Wjihi S, Sellaoui L, Bouzid M, Dhaou H, Knani S, Jemni A, Lamine AB. Theoretical study of hydrogen sorption on LaNi5 using statistical physics treatment: microscopic and macroscopic investigation. Int J Hydrogen Energy. 2017;42(5):2699.

    CAS  Google Scholar 

  30. Wang Q, Chen Z, Chen Y, Cheng N, Hui Q. Hydrogen storage in perovskite-type oxides ABO3 for Ni/MH battery applications: a density functional investigation. Ind Eng Chem Res. 2011;51(37):11821.

    Google Scholar 

  31. Raju M, Ananth MV, Vijayaraghavan L. Influence of temperature on the electrochemical characteristics of MmNi3.03Si0.85Co0.60Mn0.31Al0.08 hydrogen storage alloys. J Power Sources. 2008;180(2):830.

    CAS  Google Scholar 

  32. Charbonnier V, Monnier J, Zhang J, Paul-Boncour V, Joiret S, Puga B, Latroche M. Relationship between H2 sorption properties and aqueous corrosion mechanisms in A2Ni7 hydride forming alloys (A = Y, Gd or Sm). J Power Sources. 2016;326:146.

    CAS  Google Scholar 

  33. Liu Y, Pan H, Gao M, Zhu Y, Lei Y, Wang Q. The electrochemical performance of a La–Mg–Ni–Co–Mn metal hydride electrode alloy in the temperature range of − 20 to 30 °C. Electrochim Acta. 2004;49(4):545.

    CAS  Google Scholar 

  34. Garche J, Dyer CK, Moseley PT, Ogumi Z, Rand DA, Scrosati B. Encyclopedia of electrochemical power sources. Netherlands: Elsevier; 2003. 397.

    Google Scholar 

  35. Henao J, Sotelo O, Casales M, Martinez-Gomez L. Electrochemical performance of the rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 as negative electrode material for Ni/oxide rechargeable batteries. Mater Renew Sustain Energy. 2017;6(4):16.

    Google Scholar 

  36. Mosavati N, Young KH, Meng T, Simon Ng KY. Electrochemical open-circuit voltage and pressure-concentration-temperature isotherm comparison for metal hydride alloys. Batteries. 2016;2(2):6.

    CAS  Google Scholar 

  37. Volodin AA, Wan C, Denys RV, Tsirlina GA, Tarasov BP, Fichtner M, Yartys VA. Phase-structural transformations in a metal hydride battery anode La1.5Nd0.5MgNi9 alloy and its electrochemical performance. Int J Hydrogen Energy. 2016;41(23):9954.

    CAS  Google Scholar 

  38. Feinberg M. On Gibbs’ phase rule. Arch Ration Mech Anal. 1979;70(3):219.

    Google Scholar 

  39. Young K, Young M, Chang S, Huang B. Synergetic effects in electrochemical properties of ZrVxNi4.5−x (x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) metal hydride alloys. J Alloy Compd. 2013;560:33.

    CAS  Google Scholar 

  40. Young K, Ouchi T, Mays W, Reichman B, Fetcenko MA. Pressure–composition–temperature hysteresis in C14 Laves phase alloys: part 2. Applications in NiMH batteries. J Alloy Compd. 2009;480(2):434.

    CAS  Google Scholar 

  41. Wong DF, Young K, Ng KYS. First-principles study of structure, initial lattice expansion, and pressure-composition-temperature hysteresis for substituted LaNi5 and TiMn2 alloys. Model Simul Mater Sci Eng. 2016;24(8):085007.

    Google Scholar 

  42. Flanagan TB, Clewley JD. Hysteresis in metal hydrides. J Less Common Metals. 1982;83(1):127.

    CAS  Google Scholar 

  43. Erika T, Sebastian C, Fernando Z, Verónica D. Temperature performance of AB5 hydrogen storage alloy for Ni-MH batteries. Int J Hydrogen Energy. 2016;41(43):19684.

    CAS  Google Scholar 

  44. Qian S, Northwood DO. Hysteresis in metal-hydrogen systems: a critical review of the experimental observations and theoretical models. Int J Hydrogen Energy. 1988;13(1):25.

    CAS  Google Scholar 

  45. Fang S, Zhou Z, Zhang J, Yao M, Feng F, Northwood DO. The application of mathematical models to the calculation of selected hydrogen storage properties (formation enthalpy and hysteresis) of AB2-type alloys. Int J Hydrogen Energy. 2000;25(2):143.

    CAS  Google Scholar 

  46. Young K, Chao B, Bendersky LA, Wang K. Ti12.5Zr21V10Cr8.5MnxCo1.5Ni46.5−x AB2-type metal hydride alloys for electrochemical storage application: Part 2. Hydrogen storage and electrochemical properties. J Power Sources. 2012;218:487.

    CAS  Google Scholar 

  47. Notten P. Hokkeling, double-phase hydride forming compounds: a new class of highly electrocatalytic materials. J Electrochem Soc. 1991;138(7):1877.

    CAS  Google Scholar 

  48. Lim DK, Im HN, Kim J, Song SJ. Electrochemical properties of LaMO3 (M = Co or Fe) as the negative electrode in a hydrogen battery. J Phys Chem Solids. 2013;74(1):115.

    CAS  Google Scholar 

  49. Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrodes in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.

    CAS  Google Scholar 

  50. Lin J, Sun L, Cao Z, Yin D, Liang F, Wu Y, Wang L. A novel method to prepare Ti1.4V0.6Ni alloy covered with carbon and nanostructured Co3O4, and its good electrochemical hydrogen storage properties as negative electrode material for Ni–MH battery. Electrochim Acta. 2016;222:1716.

    CAS  Google Scholar 

  51. Lim DK, Im HN, Singh B, Park CJ, Song SJ. Electrochemical hydrogen charge and discharge properties of La0.1Sr0.9Co1− yFeyO3−δ (y = 0, 0.2, 1) electrodes in alkaline electrolyte solution. Electrochim Acta. 2013;102:393.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Science and Technology Council of Mexico “CONACYT-SENER-Sustentabilidad Energética” (No. 232611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Henao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henao, J., Sotelo, O., Casales-Diaz, M. et al. Hydrogen storage in a rare-earth perovskite-type oxide La0.6Sr0.4Co0.2Fe0.8O3 for battery applications. Rare Met. 37, 1003–1013 (2018). https://doi.org/10.1007/s12598-018-1062-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1062-6

Keywords

Navigation