Skip to main content
Log in

Fabrication and characterization of NiO films for energetic nano-multilayers by direct current reactive sputtering

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

NiO films were fabricated by reactive direct current magnetron sputtering on glass and alumina substrates for the application in energetic nano-multilayers. The structural and thermal properties of the films were investigated with the volume ratio of oxygen to argon ranging from 1:9 to 3:2, and the optimized ratio value is obtained as 1:3, which was confirmed by X-ray diffraction (XRD), atomic force microscopy and ultrafast measurement system. The effect of the film thickness, varying from 150 to 900 nm, on the structural properties was characterized by XRD and scanning electron microscopy (SEM). XRD analysis reveals that the (111) lattice plane is the preferred orientation. The intensities of preferential peaks and the grain sizes increase as the film thicknesses increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gavens AJ, Heerden DV, Mann AB, Reiss ME, Weihs TP. Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J Appl Phys. 2000;87(3):1255.

    Article  Google Scholar 

  2. Knepper R, Snyder MR, Fritz G, Fisher K, Knio OM, Weihs TP. Effect of varying bilayer spacing distribution on reaction heat and velocity in reactive Al/Ni multilayers. J Appl Phys. 2009;105(8):083504.

    Article  Google Scholar 

  3. Simoes S, Viana F, Ramos AS, Vieira MT, Vieira MF. Anisothermal solid-state reactions of Ni/Al nanometric multilayers. Intermetallics. 2011;19(3):3504.

    Article  Google Scholar 

  4. Swain M, Singh S, Basu S, Gupta M. Effect of interface morphology on intermetallics formation upon annealing of Al-Ni multilayer. J Alloy Compd. 2013;576:257.

    Article  Google Scholar 

  5. Tanaka S, Kondo K, Habu H, Itoh A, Watanabe M, Hori K, Esashi M. Test of B/Ti multilayer reactive igniters for a micro solid rocket array thruster. Sensor Actuat A-Phys. 2008;144(2):361.

    Article  Google Scholar 

  6. Yan YC, Shi W, Jiang HC, Cai XY, Deng XW, Xiong J, Zhang WL. Characteristics of the energetic igniters through integrating B/Ti nanolaminates on TaN film bridge. Nanoscale Res Lett. 2015;10(1):244.

    Article  Google Scholar 

  7. Blobaum KJ, Reiss ME, Lawrence JMP, Weihs TP. Deposition and characterization of a self-propagating CuO x /Al thermite reaction in a multilayer foil geometry. J Appl Phys. 2003;94(5):2915.

    Article  Google Scholar 

  8. Blobaum KJ, Wagner AJ, Plitzko JM, Heerden DV, Fairbrother DH, Weihs TP. Investigating the reaction path and growth kinetics in CuO x /Al multilayer foils. J Appl Phys. 2003;94(5):2923.

    Article  Google Scholar 

  9. Zhang KL, Rossi C, Petrantoni M, Mauran N. A nano initiator realized by integrating Al/CuO-based nanoenergetic materials with a Au/Pt/Cr microheater. J Microelectromech Syst. 2008;17(4):832.

    Article  Google Scholar 

  10. Fu S, Zhu Y, Li DL, Zhu P, Hu B, Ye YH, Shen RQ. Deposition and characterization of highly energetic Al/MoO x multilayer nano-films. Eur Phys J-Appl Phys. 2013;64(3):30301.

    Article  Google Scholar 

  11. Xu JB, Tai Y, Ru CB, Dai J, Shen Y, Ye YH, Shen RQ, Fu S. Characteristic of energetic semiconductor bridge based on Al/MoOx energetic multilayer nanofilms with different modulation periods. J Appl Phys. 2017;121(11):113301.

    Article  Google Scholar 

  12. Zhu P, Jiao JS, Shen RQ, Ye YH, Fu S, Li DL. Energetic semiconductor bridge device incorporating Al/MoO x multilayer nanofilms and negative temperature coefficient thermistor chip. J Appl Phys. 2014;115(19):194502.

    Article  Google Scholar 

  13. Yan YC, Shi W, Jiang HC, Xiong J, Zhang WL, Li YR. Characteristics of the energetic igniters through integrating Al/NiO nanolaminates on Cr film bridge. Nanoscale Res Lett. 2015;10(1):504.

    Article  Google Scholar 

  14. Yan YC, Shi W, Jiang HC, Xiong J, Zhang WL, Li YR. Fabrication and characterization of Al/NiO energetic nanomultilayers. J Nanomater. 2015;2015(11):964135.

    Google Scholar 

  15. Golnaz BZ, Wen JZ, Hu A, Persic J, Ringuette S, Zhou YN. Thermo-chemical characterization of a Al nanoparticle and NiO nanowire composite modified by Cu powder. Thermochim Acta. 2013;572(17):51.

    Google Scholar 

  16. Zhang KL, Rossi C, Alphonse P, Tenailleau C, Cayez S, Chane-Ching JY. Integrating Al with NiO nano honeycomb to realize an energetic material on silicon substrate. Appl Phys A-Mater. 2009;94(4):957.

    Article  Google Scholar 

  17. Karpinski A, Ouldhamadouche N, Ferrec A, Cattin L, Richard-Plouet M, Brohan L. Optical characterization of transparent nickel oxide films deposited by DC current reactive sputtering. Thin Solid Films. 2011;519(17):5767.

    Article  Google Scholar 

  18. Dewan S, Tomar M, Tandon RP, Gupta V. Zn doping induced conductivity transformation in NiO films for realization of p-n homo junction diode. J Appl Phys. 2017;121(21):215307.

    Article  Google Scholar 

  19. Chen S, Manders JR, Tsang SW, So F. Metal oxides for interface engineering in polymer solar cells. J Mater Chem. 2012;22(46):24202.

    Article  Google Scholar 

  20. Verma V, Katiyar M. Origin of intrinsic ferromagnetism in undoped antiferromagnetic NiO thin films. J Phys D Appl Phys. 2015;48(23):235003.

    Article  Google Scholar 

  21. Li J, Tan A, Moon KW, Doran A, Marcus MA, Young AT, Arenholz E, Ma S, Yang RF, Hwang C, Qiu ZQ. Imprinting antivortex states from ferromagnetic Fe into antiferromagnetic NiO in epitaxial NiO/Fe/Ag(001) microstructures. Appl Phys Lett. 2014;104(11):112407.

    Article  Google Scholar 

  22. Zhang X, Zhang YZ, Zhao BW, Lu SJ, Wang H, Liu JB, Yan H. Improvement on optical modulation and stability of the NiO based electrochromic devices by nanocrystalline modified nanocomb hybrid structure. RSC Adv. 2015;5(123):101487.

    Article  Google Scholar 

  23. Pereira S, Goncalves A, Correia N, Pinto J, Pereira L, Martins R, Fortunato E. Electrochromic behavior of NiO thin films deposited by e-beam evaporation at room temperature. Sol Energy Mater Sol Cells. 2014;120(1):109.

    Article  Google Scholar 

  24. Zou ZB, Xiong XB, Ma J, Zeng XR, Huang T, Li JJ, Li B. In situ two-step electrochemical preparation of fluoride-free nickel-based compound film on nickel plate for supercapacitors. Rare Met. 2016;35(12):930.

    Article  Google Scholar 

  25. Malara F, Fabbri F, Marelli M, Naldoni A. Controlling the surface energetics and kinetics of hematite photoanodes through few atomic layers of NiO x . ACS Catal. 2016;6(6):3619.

    Article  Google Scholar 

  26. Steirer KX, Ndione PF, Widjonarko NE, Lloyd MT, Meyer J, Ratcliff EL, Kahn A, Armstrong NR, Curtis CJ, Ginley DS. Enhanced efficiency in plastic solar cells via energy matched solution processed NiO x interlayers. Adv Energy Mater. 2011;1(5):813.

    Article  Google Scholar 

  27. Yin XT, Chen P, Que MD, Xing YL, Que WX, Niu CM, Shao JY. Highly efficient flexible perovskite solar cells using solution-derived NiO x hole contacts. ACS Nano. 2016;10(3):3630.

    Article  Google Scholar 

  28. Yang C, He YY, Chu JW, Xue Y, Zhang F, Hui W, Tao BW, Xiong J. Tailoring surface roughness of LaMnO3 buffer layers for YBCO-coated conductors. Rare Met. 2015;34(12):859.

    Article  Google Scholar 

  29. Zhao XH, Wang YR, Chen YZ, Jiang HC, Zhang WL. Enhanced thermoelectric property and stability of NiCr-NiSi thin film thermocouple on superalloy substrate. Rare Met. 2017;36(6):512.

    Article  Google Scholar 

  30. Xiong J, Chen Y, Qiu Y, Tao BW, Qin WF, Cui XM, Tang JL, Li YR. A novel process for CeO2 single buffer layer on biaxially textured metal substrates in YBCO coated conductors. Supercond Sci Technol. 2006;19(10):1068.

    Article  Google Scholar 

Download references

Acknowledgements

This study is financially supported by the Military Pre-Research fund (No. 9140A12040412DZ02138).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YC., Shi, W., Jiang, HC. et al. Fabrication and characterization of NiO films for energetic nano-multilayers by direct current reactive sputtering. Rare Met. 37, 594–598 (2018). https://doi.org/10.1007/s12598-018-1011-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1011-4

Keywords

Navigation