Skip to main content
Log in

Mechanical properties and corrosion behavior of a new RRA-treated Al–Zn–Mg–Cu–Er–Zr alloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of various retrogression and re-aging (RRA) treatments on mechanical properties and corrosion behavior of a new type Al–Zn–Mg–Cu–Er–Zr alloy was investigated by microhardness testing, tensile testing, intergranular corrosion (IGC) and exfoliation corrosion (EXCO) testing. The results show that the RRA treatment can effectively improve the IGC and EXCO resistance with less strength sacrificing because the grain interior precipitates and the grain boundary precipitates are similar to that of T6 temper and T73 temper. Meanwhile, as the microhardness of the retrogressed alloy reaches the peak value during the retrogression at 170 °C, the corresponding RRA-treated alloy possesses the better strength, but the corrosion resistance is poor in comparison with that of the retrogression at 190 °C. The optimal combination of strength, IGC and EXCO resistance is obtained after retrogression at 180 °C for 60 min. Moreover, for different heat treatment tempers, the corresponding microstructural evolution of the precipitates including Al3(Er, Zr) particles was also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng A. 2000;280(1):102.

    Article  Google Scholar 

  2. Williams JC, Starke EA. Progress in structural materials for aerospace systems. Acta Mater. 2003;51(19):5775.

    Article  CAS  Google Scholar 

  3. Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014;56(4):862.

    Article  CAS  Google Scholar 

  4. Song FX, Zhang XM, Liu SD, Tan Q, Li DF. Exfoliation corrosion behavior of 7050-T6 aluminum alloy treated with various quench transfer time. Trans Nonferrous Met Soc China. 2014;24(7):2258.

    Article  CAS  Google Scholar 

  5. Song FX, Zhang XM, Liu SD, Tan Q, Li DF. The effect of quench transfer time on microstructure and localized corrosion behavior of 7050-T6 Al alloy. Mater Corros. 2014;65(10):1007.

    Article  CAS  Google Scholar 

  6. Wang D, Ni DR, Ma ZY. Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy. Mater Sci Eng A. 2008;494(1–2):360.

    Article  Google Scholar 

  7. Deng Y, Yin ZM, Zhao K, Duan JQ, Hu J, He ZB. Effects of Sc and Zr micro alloying additions and aging time at 120 °C on the corrosion behavior of an Al–Zn–Mg alloy. Corros Sci. 2012;65(65):288.

    Article  CAS  Google Scholar 

  8. Yang W, Ji S, Zhang Q, Wang M. Investigation of mechanical and corrosion properties of an Al–Zn–Mg–Cu alloy under various ageing conditions and interface analysis of precipitate. Mater Des. 2015;85:752.

    Article  CAS  Google Scholar 

  9. Cina BM. Reducing the susceptibility of alloys, particularly aluminium alloys, to stress corrosion cracking. US Patent 3856584; 1974.

  10. Talianker M, Cina B. Retrogression and reaging and the role of dislocations in the stress corrosion of 7000-type aluminum alloys. Metall Mater Trans A. 1989;20(10):2087.

    Article  Google Scholar 

  11. Park JK, Ardell AJ. Effect of retrogression and reaging treatments on the microstructure of Ai-7075-T651. Metall Trans A. 1984;15(8):1531.

    Article  Google Scholar 

  12. Marlaud T, Deschamps A, Bley F, Lefebvre W, Baroux B. Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al–Zn–Mg–Cu alloy. Acta Mater. 2010;58(14):4814.

    Article  CAS  Google Scholar 

  13. Oliveira AF, Barros MCD, Cardoso KR, Travessa DN. The effect of RRA on the strength and SCC resistance on AA7050 and AA7150 aluminium alloys. Mater Sci Eng A. 2004;379(1–2):321.

    Article  Google Scholar 

  14. Li JF, Birbilis N, Li CX, Jia ZQ, Cai B, Zheng ZQ. Influence of retrogression temperature and time on the mechanical properties and exfoliation corrosion behavior of aluminium alloy AA7150. Mater Charact. 2009;60(11):1334.

    Article  CAS  Google Scholar 

  15. Zhang L, Li XY, Nie ZR, Huang H, Sun JT. Microstructure and mechanical properties of a new Al–Zn–Mg–Cu alloy joints welded by laser beam. Mater Des. 2015;83:451.

    Article  CAS  Google Scholar 

  16. Wu H, Wen SP, Huang H, Wu XL, Gao KY, Wang W, Nie ZR. Hot deformation behavior and constitutive equation of a new type Al–Zn–Mg–Er–Zr alloy during isothermal compression. Mater Sci Eng A. 2016;651:415.

    Article  CAS  Google Scholar 

  17. Chinh NQ, Lendvai J, Ping DH, Hono K. The effect of Cu on mechanical and precipitation properties of Al–Zn–Mg alloys. J Alloys Compd. 2004;378:52.

    Article  CAS  Google Scholar 

  18. Wen SP, Xing ZB, Huang H, Li BL, Wang W, Nie ZR. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater Sci Eng A. 2009;516(1):42.

    Article  Google Scholar 

  19. Wen SP, Gao KY, Huang H, Wang W, Nie ZR. Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature. J Alloys Compd. 2013;574(1):92.

    Article  CAS  Google Scholar 

  20. Viana F, Pinto A, Santos H, Lopes AB. Retrogression and re-ageing of 7075 aluminium alloy: microstructural characterization. J Mater Process Technol. 1999;92–93(99):54.

    Article  Google Scholar 

  21. Feng D, Zhang XM, Liu SD, Wang T, Wu ZZ, Guo YW. The effect of pre-ageing temperature and retrogression heating rate on the microstructure and properties of AA7055. Mater Sci Eng A. 2013;588(5):34.

    Article  CAS  Google Scholar 

  22. Xiao P, Liu ZY, Bai S, Lu LQ, Gao LF. Enhanced fatigue crack propagation resistance in a superhigh strength Al–Zn–Mg–Cu alloy by modifying RRA treatment. Mater Charact. 2016;118:438.

    Article  Google Scholar 

  23. Feng C, Ning AL, Liu ZY, Liu YB, Zeng SM. Retrogression and re-aging treatment of Al-9.99% Zn-1.72% Cu-2.5% Mg-0.13% Zr aluminum alloy. Trans Nonferrous Met Soc China. 2006;16(5):1163.

    Article  CAS  Google Scholar 

  24. Danh NC, Rajan K, Wallace W. A TEM study of microstructural changes during retrogression and reaging in 7075 aluminum. Metall Trans A. 1983;14(9):1843.

    Article  Google Scholar 

  25. Dixit M, Mishra RS, Sankaran KK. Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mater Sci Eng A. 2008;478(1–2):163.

    Article  Google Scholar 

  26. Xiao YP, Pan QL, Li WB, Liu XY, He YB. Influence of retrogression and re-aging treatment on corrosion behavior of an Al–Zn–Mg–Cu alloy. Mater Des. 2011;32(4):2149.

    Article  CAS  Google Scholar 

  27. Jiang D, Liu Y, Liang S, Xie W. The effects of non-isothermal aging on the strength and corrosion behavior of Al–Zn–Mg–Cu alloy. J Alloys Compd. 2016;681:57.

    Article  CAS  Google Scholar 

  28. Liu XY, Li MJ, Gao F, Liang SX, Zhang XL, Cui HX. Effects of aging treatment on the intergranular corrosion behavior of Al–Cu–Mg–Ag alloy. J Alloys Compd. 2015;639:263.

    Article  CAS  Google Scholar 

  29. Li JF, Zhang ZQ, Li SC, Chen WJ, Ren WD, Zhao XS. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloys. Corros Sci. 2007;49(6):2436.

    Article  CAS  Google Scholar 

  30. Wang ZT, Tian RZ. Handbook of Aluminum Alloy and Its Working. 3rd ed. Changsha: Central South University; 2000. 196.

    Google Scholar 

  31. Liu SD, Chen B, Li CB, Dai Y, Deng YL, Zhang XM. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros Sci. 2015;91:203.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Basic Research & Development Plan Project (No. 2012CB619503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, JT., Huang, H., Wu, H. et al. Mechanical properties and corrosion behavior of a new RRA-treated Al–Zn–Mg–Cu–Er–Zr alloy. Rare Met. 42, 672–679 (2023). https://doi.org/10.1007/s12598-017-0967-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0967-9

Keywords

Navigation