Skip to main content
Log in

Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Inhibition force of precipitate particles for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets was investigated in this study. After a continuous heating and a high-temperature annealing, the Fe83Ga17 + 0.5 at% B alloy sheets do not occur significant abnormal grain growth. Correspondingly, textures of {111}<112> and {100}<001> in addition to the Goss texture are obtained in the final annealed alloy sheets. By contrast, after the same annealing processes, the size of {110} textured grains is very large in the final annealed Fe83Ga17 + 0.5 at% NbC alloy sheets due to the abnormal grain growth, which results in a sharp Goss texture. BN precipitates were introduced into Fe83Ga17 + 0.2 at% B alloy sheets by nitriding annealing at 800 °C for 2 min under NH3 atmosphere. The abnormal grain growth of Goss grains is achieved in 0.2 at% B-doped Fe83Ga17 alloy sheets after a high-temperature annealing, which is attributed to the enhanced inhibition force by introducing BN precipitates. During the recrystallization annealing process, Fe2B precipitates is easy to coarsen and decompose at high temperature due to the low thermal stability, resulting in a decrease or even disappearance of the inhibition force. For NbC and BN precipitates, the thermal stability and hardness of particles are both better than those of Fe2B precipitates, leading to strong inhibition force. Because of the preferred Goss texture, the magnetostriction of 2.05 × 10−4 and 1.81 × 10−4 is obtained in the secondary recrystallized Fe83Ga17 + 0.5 at% NbC and Fe83Ga17 + 0.2 at% B alloy sheets, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Clark AE, Restorff JB, Wun-Fogle M, Lograsso TA, Schlagel DL. Magnetostrictive properties of body-centered cubic Fe–Ga and Fe–Ga–Al alloys. IEEE Trans Magn. 2000;36(5):3238.

    Article  Google Scholar 

  2. Srisukhumbowornchai N, Guruswamy S. Large magnetostriction in directionally solidified FeGa and FeGaAl alloys. J Appl Phys. 2001;90(11):5680.

    Article  Google Scholar 

  3. Emdadi A. Microstructure and magnetostrictive behavior of Fe-15 at% Ga alloy with different cooling rates. Rare Met. 2015;34(4):251.

    Article  Google Scholar 

  4. Kellogg RA, Russell AM, Lograsso TA, Flatau AB, Clark AE, Wun-Fogle M. Tensile properties of magnetostrictive iron–gallium alloys. Acta Mater. 2004;52(17):5043.

    Article  Google Scholar 

  5. Yu GH, Xu YL, Liu ZH, Qiu HM, Zhu ZY, Huang XP, Pan LQ. Recent progress in Heusler-type magnetic shape memory alloys. Rare Met. 2015;34(8):527.

    Article  Google Scholar 

  6. Clark AE, Hathaway KB, Wun-Fogle M, Restorff JB, Lograsso TA, Keppens VM, Petculescu G, Taylor RA. Extraordinary magnetoelasticity and lattice softening in bcc Fe–Ga alloys. J Appl Phys. 2003;93(10):8621.

    Article  Google Scholar 

  7. Summers E, Meloy R, Na SM. Magnetostriction and texture relationships in annealed galfenol alloys. J Appl Phys. 2009;105(7):07A922.

    Article  Google Scholar 

  8. Na SM, Suh SJ, Flatau AB. Surface segregation and texture development in rolled Fe–Ga alloy. J Magn Magn Mater. 2007;310(2):2630.

    Article  Google Scholar 

  9. Srisukhumbowornchai N, Guruswamy S. Crystallographic textures in rolled and annealed Fe–Ga and Fe–Al alloys. Metall Mater Trans A. 2004;35(9):2963.

    Article  Google Scholar 

  10. Li JH, Gao XX, Zhu J, Bao XQ, Xia T, Zhang MC. Ductility, texture and large magnetostriction of Fe–Ga-based sheets. Scr Mater. 2010;63(2):246.

    Article  Google Scholar 

  11. Li JH, Gao XX, Zhu J, He CX, Qiao JW, Zhang MC. Texture evolution and magnetostriction in rolled (Fe81Ga19)99Nb1 alloy. J Alloys Compd. 2009;476(1):529.

    Article  Google Scholar 

  12. Meloy R, Summers E. Magnetic property-texture relationships in galfenol rolled sheet stacks. J Appl Phys. 2011;109(7):07A930.

    Article  Google Scholar 

  13. Na SM, Yoo JH, Flatau AB. Abnormal (110) grain growth and magnetostriction in recrystallized Galfenol with dispersed niobium carbide. IEEE Trans Magn. 2009;45(10):4132.

    Article  Google Scholar 

  14. Na SM, Flatau AB. Single grain growth and large magnetostriction in secondarily recrystallized Fe–Ga thin sheet with sharp Goss (011)[100] orientation. Scr Mater. 2012;66(5):307.

    Article  Google Scholar 

  15. Na SM, Flatau AB. Surface-energy-induced selective growth of (001) grains in magnetostrictive ternary Fe–Ga-based alloys. Smart Mater Struct. 2012;21(5):055024.

    Article  Google Scholar 

  16. Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX. Sharp Goss orientation and large magnetostriction in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater. 2015;374:459.

    Article  Google Scholar 

  17. Yuan C, Gao XX, Li JH, Bao XQ. Secondary recrystallization of Goss texture in magnetostrictive Fe–Ga-based sheets. Rare Met. 2014;. doi:10.1007/s12598-014-0284-5.

    Google Scholar 

  18. He ZH, Sha YH, Fu Q, Lei F, Zhang F, Zuo L. Secondary recrystallization and magnetostriction in binary Fe81Ga19 thin sheets. J Appl Phys. 2016;119(12):123904.

    Article  Google Scholar 

  19. Na SM, Flatau AB. Deformation behavior and magnetostriction of polycrystalline Fe–Ga–X (X = B, C, Mn, Mo, Nb, NbC) alloys. J Appl Phys. 2008;103:07D304.

    Article  Google Scholar 

  20. Li JH, Gao XX, Xie JX, Yuan C, Zhu J, Yu RB. Recrystallization behavior and magnetostriction under pre-compressive stress of Fe–Ga–B sheets. Intermetallics. 2012;26(7):66.

    Article  Google Scholar 

  21. Sun AL, Liu JH, Jiang CB. Recrystallization, texture evolution, and magnetostriction behavior of rolled (Fe81Ga19)98B2 sheets during low-to-high temperature heat treatments. J Mater Sci. 2014;49(13):4565.

    Article  Google Scholar 

  22. Perrard F, Deschamps A, Maugis P. Modelling the precipitation of NbC on dislocations in α-Fe. Acta Mater. 2007;55(4):1255.

    Article  Google Scholar 

  23. Yan HT, Bi HY, Li X, Xu Z. Precipitation and mechanical properties of Nb-modified ferritic stainless steel during isothermal aging. Mater Charact. 2009;60(3):204.

    Article  Google Scholar 

  24. Na SM, Flatau AB. Magnetostriction and surface-energyinducedselective grain growth in rolled Galfenol doped with sulfur. In: Proceedings of SPIE. 2008;5761:192.

  25. Yuan C, Li JH, Zhang WL, Bao XQ, Gao XX. Secondary recrystallization behavior in the rolled columnar-grained Fe–Ga alloys. J Magn Magn Mater. 2015;391:145.

    Article  Google Scholar 

  26. Woo JS, Han CH, Hong BD, Harase J. Influence of secondary recrystallization onset temperature on evolution of sharp goss texture in nitrided Fe-3%Si alloy. J Japan Inst Met. 1998;62(7):642.

    Article  Google Scholar 

  27. Kumano T, Haratani T, Fujii N. Effect of nitriding on grain oriented silicon steel bearing aluminum. ISIJ Int. 2005;45(1):95.

    Article  Google Scholar 

  28. Na SM, Atwater KM, Flatau AB. Particle pinning force thresholds for promoting abnormal grain growth in magnetostrictive Fe–Ga alloy sheets. Scr Mater. 2015;100:1.

    Article  Google Scholar 

  29. Li JH, Qi QQ, Yuan C, Bao XQ, Gao XX. Selective abnormal growth behavior of goss grains in magnetostrictive Fe–Ga alloy sheets. Mater Trans. 2016;57(12):2083.

    Article  Google Scholar 

  30. Liu YY, Li JH, Gao XX. Influence of intermediate annealing on abnormal Goss grain growth in the rolled columnar-grained Fe–Ga–Al alloys. J Magn Magn Mater. 2017;435:194.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51501006 and 51271019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Xu Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JH., Zhang, WL., Yuan, C. et al. Inhibition force of precipitates for promoting abnormal grain growth in magnetostrictive Fe83Ga17-(B,NbC) alloy sheets. Rare Met. 36, 886–893 (2017). https://doi.org/10.1007/s12598-017-0956-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0956-z

Keywords

Navigation