Skip to main content
Log in

Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The magnetic Fe3O4@C@TiO2 microspheres with multilevel yolk–shell structure were successfully prepared by combining sol–gel and simple hydrothermal methods. The features of the as-obtained Fe3O4@C@TiO2 microspheres were investigated by Fourier transform infrared (FTIR) spectra, scanning electron microscopy (SEM), powder X-ray diffraction (XRD), N2 adsorption–desorption measurements and transmission electron microscopy (TEM). Fe3O4@C@TiO2 was used as an adsorbent to explore its adsorption properties of oxytetracycline hydrochloride (OTC-HCl) by changing initial concentration and time. The results suggest that the maximum adsorption of Fe3O4@C@TiO2 is 87.3 mg·g−1, and the time reaching the absorption equilibrium is 60 min. Langmuir model fits to data better than the Freundlich model, and the kinetic properties are well described by the pseudo-second-order model. In addition, the synthesized composites’ reusability without obvious deterioration in performance is demonstrated by three cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Watkinson AJ, Murbyd EJ, Kolpine DW, Costanzo SD. The occurrence of antibiotics in an urban watershed: from waste water to drinking water. Sci Total Environ. 2009;407(8):2711.

    CAS  Google Scholar 

  2. Luo Y, Mao DQ, Rysz M, Zhou QX, Zhang HJ, Xu L, Alvarez PJJ. Trends in antibiotic resistance genes occurrence in the Haihe River, China. Environ Sci Technol. 2010;44(19):7220.

    Google Scholar 

  3. Yuan F, Hu C, Hu X, Wei D, Chen Y, Qu J. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. J Hazard Mater. 2011;185(2–3):1256.

    CAS  Google Scholar 

  4. Rong SP, Sun YB, Zhao YH. Degradation of sulfadiazine antibiotics by water falling film dielectric barrier discharge. Chin Chem Lett. 2014;25(1):187.

    CAS  Google Scholar 

  5. Ji LL, Chen W, Bi J, Zheng SR, Xu ZY, Zhu DQ, Alvarez PJ. Adsorption of tetracycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ Toxicol Chem. 2010;29(12):2713.

    CAS  Google Scholar 

  6. Jia JY, Li ML. The research progress of the migration and biological effect of antibiotics in our environment. Sichuan Environ. 2011;30(1):121.

    Google Scholar 

  7. Yao Y, Qian C, Yue ZJ. Sketch about the problem about antibiotic problems of water. Heilongjiang Sci Technol Inf. 2008;9:165.

    Google Scholar 

  8. He ZW, Liu GG, Liu HJ, Zhang N, Wang G. The effect of different nitrogen forms on the photo-degradation of ciprofloxacin in water. Acta Sci Circumst. 2011;31(11):2409.

    CAS  Google Scholar 

  9. Yu S, Wang M, Hong YW. Antibiotics in environmental matrices and their effects on microbial ecosystems. Acta Ecol Sin. 2011;31(5):4437.

    CAS  Google Scholar 

  10. Jiang M, Jiang P. Discussion on antibiotics. Heilongjiang Tradit Chin Med. 2012;25(3):379.

    Google Scholar 

  11. Baran W, Sochacka J, Wardas W. Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solution. Chemosphere. 2006;65(8):1295.

    CAS  Google Scholar 

  12. Yiruhan Wang QJ, Mo CH, Li YW, Gao P, Tai YP, Zhang Y, Ruan ZL, Xu JW. Determination of four fluoroquinolone antibiotics in tap water in Guangzhou and Macao. Environ Pollut. 2010;158(7):2350.

    Google Scholar 

  13. He DC, Xu ZC, Wu GY, Qiu JR, Qin GJ. Progress on residues and environmental behavior of tetracycline antibiotics. Sci Tech Vis. 2011;32(4):98.

    Google Scholar 

  14. Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere. 2006;65(5):725.

    CAS  Google Scholar 

  15. Madden JC, Enoch SJ, Hewitt M, Cronin MTD. Pharmaceuticals in the environment: good practice in predicting acute ecotoxicological effects. Toxicol Lett. 2009;185(2):85.

    CAS  Google Scholar 

  16. Zhang ZJ, Wang X, Qiu SX, Pan JM. Adsorption of oxytetracycline hydrochloride in aqueous solutions by magnetic halloysite composites. Chin J Environ Eng. 2013;7(10):3921.

    CAS  Google Scholar 

  17. Feng L, Chu Y, Liu JL, Sun WD, Jiang L. Preparation of loaded nanosize TiO2 photocatalyst in reverse micelle system. Chem J Chin Univ. 2002;23(8):1567.

    CAS  Google Scholar 

  18. Jiang YP. The study of adsorption and photocatalysis for TiO2 in different pH and high-salinity solution. Guangzhou: S China Univ Technol; 2013. 1.

    Google Scholar 

  19. Zhang Q, Meng GH, Wu JN, Li DQ, Liu ZY. Study on enhanced photocatalytic activity of magnetically recoverable Fe3O4@C@TiO2 nanocomposites with core–shell nanostructure. Opt Mater. 2015;46:52.

    Google Scholar 

  20. Chen LL, Li L, Wang TT, Zhang LY, Xing SX, Wang CG, Su ZM. A novel strategy to fabricate multifunctional Fe3O4@C@TiO2 yolk–shell structures as magnetically recyclable photocatalysts. Nanoscale. 2014;6(12):6603.

    CAS  Google Scholar 

  21. Lin MH, Huang HL, Liu ZT, Liu YJ, Ge JB, Fang YP. Growth − dissolution − regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions. Langmuir. 2013;29(49):15433.

    CAS  Google Scholar 

  22. Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99(3):1727.

    CAS  Google Scholar 

  23. Ma M, Zhang Y, Yu W, Shen HY, Zhang HG, Gu N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf A. 2003;212(2–3):219.

    CAS  Google Scholar 

  24. Sahoo Y, Goodarzi A, Swihart MT, Ohulchansky TY, Kaur N, Furlani EP, Prasad PN. Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control. J Phys Chem B. 2005;109(9):3879.

    CAS  Google Scholar 

  25. Racuciu M, Creanga DE, Airinei A. Citric-acid-coated magnetite nanoparticles for biological applications. Eur Phys J E. 2006;21(2):117.

    CAS  Google Scholar 

  26. Kim CH, Zhang ZF, Wang LS. Sun Ting. Preparation of MnO2 impregnated carbon-coated Fe3O4 nanocomposites and their application for BSA adsorption. Rare Met. 2017;. doi:10.1007/s12598-013.

    Article  Google Scholar 

  27. Wen YY, Ding HM, Shan YK. Preparation and visible light photocatalytic activity of Ag/TiO2/graphene nanocomposite. Nanoscale. 2011;3(10):4411.

    CAS  Google Scholar 

  28. Jing JY, Li J, Feng J, Li WY, Yu WW. Photodegradation of quinoline in water over magnetically separable Fe3O4/TiO2 composite photocatalysts. Chem Eng J. 2013;219:355.

    CAS  Google Scholar 

  29. Li ZD, Wang HL, Wei XH, Liu XY, Yang YF, Jiang WF. Preparation and photocatalytic performance of magnetic Fe3O4@TiO2 core-shell microspheres supported by silica aerogels from industrial fly ash. J Alloys Compd. 2016;659:240.

    CAS  Google Scholar 

  30. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH. Ag@AgCl: a highly efficient and stable photocatalyst active under visible light. Angew Chem Int Ed. 2008;47(41):7931.

    CAS  Google Scholar 

  31. Li SK, Huang FZ, Wang Y, Shen YH, Qiu LG, Xie AJ, Xu SJ. Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J Mater Chem. 2011;21(20):7459.

    CAS  Google Scholar 

  32. Wang P, Chen D, Tang FQ. Preparation of titania-coated polystyrene particles in mixed solvents by ammonia catalysis. Langmuir. 2006;22(10):4832.

    CAS  Google Scholar 

  33. Zhang ZJ, Wang X, Qiu SX, Pan JM. Adsorption of oxytetracycline hydrochloride in aqueous solutions by magnetic halloysite composites. J Environ Eng. 2013;7(10):3921.

    CAS  Google Scholar 

  34. Kang J, Yang YQ, Ling HB, Cai JX. Adsorptive removal of oxytetracycline from aqueous solution by magnetic material CuFe2O4. Environ Sci Technol. 2016;39(1):108.

    CAS  Google Scholar 

  35. Langmuir I. The constitution and fundamental properties of solids and liquids. J Am Chem Soc. 1916;38(11):2221.

    CAS  Google Scholar 

  36. Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc. 1918;40:1361.

    CAS  Google Scholar 

  37. Nwabueze HO, Igbokwe PK, Amalu EU, Okoro SE. A study on the equilibrium and kinetics of oil spill cleanup using acetylated corn cobs. Int J Environ Sci. 2015;5(6):1106.

    CAS  Google Scholar 

  38. Sangi MR, Shahmoradi A, Zolgharnein J, Azimi GH, Ghorbandoost M. Removal and recovery of heavy metal from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. J Hazard Mater. 2008;155(3):513.

    CAS  Google Scholar 

  39. Aiiandkumar J, Mandal B. Removal of Cr(VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent. J Hazard Mater. 2009;16(8):633.

    Google Scholar 

  40. Zheng JY, Jun Y, Chen HL, Wang F, Liu X, Xu JS. Equilibrium and kinetic studies on adsorption of Pb(II) by activated palm kernel husk carbon. Desal Water Treat. 2016;57(16):7245.

    Google Scholar 

  41. Dwivedi CP, Sahu JN, Mohanty CR, Mohan BR, Meikap BC. Column performance of granular activated carbon packed bed for Pb(II) removal. J Hazard Mater. 2008;156(1–3):596.

    CAS  Google Scholar 

  42. Yang XY, Al-Duri B. Kinetic modeling of liquid-phase adsorption of reactive dyes on activated carbon. J Colloid Interface Sci. 2005;28(7):25.

    CAS  Google Scholar 

  43. Li ZH, Cao M, Zhang WG, Liu LZ, Wang JL, Ge WP, Yuan YH, Yue TL, Li RH, Yu WW. Affinity adsorption of lysozyme with reactive red 120 modified magnetic chitosan microspheres. Food Chem. 2014;145:749.

    CAS  Google Scholar 

  44. Iqbal M, Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J Hazard Mater. 2009;16(4):161.

    Google Scholar 

  45. Lin SH, Juang RS. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater. 2002;92(3):315.

    CAS  Google Scholar 

  46. Weng CH, Pan YF. Adsorption of a cationicdye(methylene blue) onto spent activated cay. J Hazard Mater. 2007;144(1):355.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2013ZX07202-010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin-Shan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, QL., Wang, LS., Yu, NN. et al. Preparation of Fe3O4@C@TiO2 and its application for oxytetracycline hydrochloride adsorption. Rare Met. 39, 1333–1340 (2020). https://doi.org/10.1007/s12598-017-0940-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0940-7

Keywords

Navigation