Skip to main content
Log in

Magnetic properties of α-Fe2O3 nanopallets

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

It is the result of a systemic study about uniform hematite nanopallets with length of about 100 nm, width of about 30 nm, and thickness of less than 10 nm. The sample has superparamagnetic (SPM) properties above the blocking temperature of ~16 K. The temperature dependence of magnetization was well fitted by Bloch T3/2 law considering the dipolar interaction of the particles. The field dependence of magnetization was fitted with revised Langevin equation. The magnetization of the weak ferromagnetic (WF) canted spins contributes to the linear portion in the high field region; the surface uncompensated spins and the parasitic ferromagnetic moments due to the canted spins both contribute to the particle moments and the superparamagnetic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cao X, Wang N, Jia S, Shao Y. Detection of glucose based on bimetallic PtCu nanochains modified electrodes. Anal Chem. 2013;85(10):5040.

    Article  Google Scholar 

  2. Cao X, Han Y, Gao C, Xu Y, Huang X, Willander M, Wang N. Highly catalytic active PtNiCu nanochains for hydrogen evolution reaction. Nano Energy. 2014;9:301.

    Article  Google Scholar 

  3. Cao X, Wang N, Han Y, Gao C, Xu Y, Li M, Shao Y. PtAg bimetallic nanowires: facile synthesis and their use as excellent electrocatalysts toward low-cost fuel cells. Nano Energy. 2015;12:105.

    Article  Google Scholar 

  4. Wang N, Han Y, Xu Y, Gao C, Cao X. Detection of H2O2 at the nanomolar level by electrode modified with ultrathin AuCu nanowires. Anal Chem. 2015;87(1):457.

    Article  Google Scholar 

  5. Wang N, Xu Y, Han Y, Gao C, Cao X. Mesoporous Pd@M (M = Pt, Au) microrods as excellent electrocatalysts for methanol oxidation. Nano Energy. 2015;17:111.

    Article  Google Scholar 

  6. Shan AX, Wu X, Lu J, Chen CP, Wang RM. Phase formations and magnetic properties of single crystal nickel ferrite (NiFe2O4) with different morphologies. CrystEngComm. 2015;17(7):1603.

    Article  Google Scholar 

  7. Su X, Gao C, Cheng M, Wang R. Controllable synthesis of Ni(OH)(2)/Co(OH)(2) hollow nanohexagons wrapped in reduced graphene oxide for supercapacitors. RSC Adv. 2016;6(99):97172.

    Article  Google Scholar 

  8. Duan SB, Wang RM. Controlled growth of Au/Ni bimetallic nanocrystals with different nanostructures. Rare Met. 2017;36(4):229.

    Article  Google Scholar 

  9. Zhang ZM, Gao CT, Li YX, Han WH, Fu WB, He YM, Xie EQ. Enhanced charge separation and transfer through Fe2O3/ITO nanowire arrays wrapped with reduced graphene oxide for water-splitting. Nano Energy. 2016;30:892.

    Article  Google Scholar 

  10. Cao X, Xu YJ, Wang N. Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing. Electrochim Acta. 2012;59:81.

    Article  Google Scholar 

  11. Cao X, Wang N. A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst. 2011;136(20):4241.

    Article  Google Scholar 

  12. Scialabba C, Puleio R, Peddis D, Varvaro G, Calandra P, Cassata G, Cicero L, Licciardi M, Giammona G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017;. doi:10.1007/s12274-017-1540-4.

    Google Scholar 

  13. Tamion A, Hillenkamp M, Hillion A, Maraloiu VA, Vlaicu ID, Stefan M, Ghica D, Rositi H, Chauveau F, Blanchin M-G, Wiart M, Dupuis V. Ferritin surplus in mouse spleen 14 months after intravenous injection of iron oxide nanoparticles at clinical dose. Nano Res. 2016;9(8):2398.

    Article  Google Scholar 

  14. Hung WH, Peng CJ, Yang CR, Li CJ, Shyue JJ, Chang PC, Tseng CM, Juan PC. Exploitation of a spontaneous spatial charge separation effect in plasmonic polyhedral alpha-Fe2O3 nanocrystal photoelectrodes for hydrogen production. Nano Energy. 2016;30:523.

    Article  Google Scholar 

  15. Sang XL, Li KZ, Wang H, Wei YG. Selective oxidation of methane and carbon deposition over Fe2O3/Ce1-xZrxO2 oxides. Rare Met. 2014;33(2):230.

    Article  Google Scholar 

  16. Xu YY, Dong Z, Zhang H. Synthesis of Fe-group metal oxide nanostructures by thermal oxidation and their magnetic properties. J Nanosci Nanotechnol. 2012;12(2):1114.

    Article  Google Scholar 

  17. Morrish AH. Canted Antiferromagnetism. Hematite, edited. London: World Scientific; 1995. 129.

    Book  Google Scholar 

  18. Xiong S, Xu J, Chen D, Wang RM, Hu XL, Shen GZ, Wang ZL. Controlled synthesis of monodispersed hematite microcubes and their properties. CrystEngComm. 2011;13(23):7114.

    Article  Google Scholar 

  19. Xu YY, Rui XF, Fu YY, Zhang H. Magnetic properties of alpha-Fe2O3 nanowires. Chem Phys Lett. 2005;410(1–3):36.

    Article  Google Scholar 

  20. Fu YY, Wang RM, Xu J, Chen J, Yan Y, Narlikar A, Zhang H. Synthesis of large arrays of aligned alpha-Fe2O3 nanowires. Chem Phys Lett. 2003;379(3–4):373.

    Article  Google Scholar 

  21. Xu YY, Dong Z, Zhang XJ, Jin WT, Kashkarov P, Zhang H. Synthesis and characterization of single-crystalline alpha-Fe2O3 nanoleaves. Physica E. 2009;41(5):806.

    Article  Google Scholar 

  22. Amin N, Arajs S. Morin temperature of annealed submicronic alpha-Fe2O3 particles. Phys Rev B. 1987;35(10):4810.

    Article  Google Scholar 

  23. Morin FJ. Magnetic susceptibility of alpha-Fe2O3 and alpha-Fe2O3 with added titanium. Phys Rev. 1950;78(6):819.

    Article  Google Scholar 

  24. Shull CG, Strauser WA, Wollan EO. Neutron diffraction by paramagnetic and antiferromagnetic substances. Phys Rev. 1951;83(2):333.

    Article  Google Scholar 

  25. Néel L. Théorie du traînage magnétique des ferromagnétiques en grains fins avec application aux terres cuites. Ann Geophys. 1949;5(2):99.

    Google Scholar 

  26. Rehman S, Yang W, Liu F, Hong Y, Wang T, Hou Y. Facile synthesis of anisotropic single crystalline α-Fe2O3 nanoplates and their facet-dependent catalytic performance. Inorg Chem Front. 2015;2(6):576.

    Article  Google Scholar 

  27. Wu W, Hao R, Liu F, Su X, Hou Y. Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. J Mater Chem A. 2013;1(23):6888.

    Article  Google Scholar 

  28. Nininger RC, Schroeer D. Mossbauer studies of Morin transition in bulk and microcrystalline alpha-Fe2O3. J Phys Chem Solids. 1978;39(2):137.

    Article  Google Scholar 

  29. Zitoun D, Respaud M, Fromen MC, Casanove MJ, Lecante P, Amiens C, Chaudret B. Magnetic enhancement in nanoscale CoRh particles. Phys Rev Lett. 2002;89(3):037203.

    Article  Google Scholar 

  30. Giri S, Samanta S, Maji S, Ganguli S, Bhaumik A. Magnetic properties of alpha-Fe2O3 nanoparticle synthesized by a new hydrothermal method. J Magn Magn Mater. 2005;285(1–2):296.

    Article  Google Scholar 

  31. Néel L. Low-Temperature Physics. In: DeWitt C, Dreyfus B, DeGennes PG, editors. London: Gordon and Breach. 1962. 411.

  32. Bodker F, Hansen MF, Koch CB, Lefmann K, Morup S. Magnetic properties of hematite nanoparticles. Phys Rev B. 2000;61(10):6826.

    Article  Google Scholar 

  33. Carpenter EE. Iron nanoparticles as potential magnetic carriers. J Magn Magn Mater. 2001;225(1–2):17.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 11674023, 51371015, 51331002, and 51501004) and Beijing Municipal Science and Technology Project (No. Z17111000220000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YY., Wang, L., Wu, T. et al. Magnetic properties of α-Fe2O3 nanopallets. Rare Met. 38, 14–19 (2019). https://doi.org/10.1007/s12598-017-0938-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0938-1

Keywords

Navigation