Skip to main content
Log in

Novel cemented carbide produced with TiN0.3 and high-entropy alloys

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

High-entropy alloys are suitable for use as a binder for cemented carbides duo to outstanding mechanical, oxidation and wear behavior. Therefore, high-entropy alloy was selected to replace Co and Ni metal bond in this study. The results of X-ray diffraction analysis show that CoCrNiCuMn high-entropy alloy is stabilized in the cemented carbide system. Scanning electron microscope (SEM) fractural morphologies of the cemented carbides added with CoCrNiCuMn show that CoCrNiCuMn distributes in grain boundaries, and the grains are bound tightly together. Furthermore, SEM fractural morphologies of the cemented carbides with 5 wt%, 7 wt%, and 10 wt% CoCrNiCuMn show that CoCrNiCuMn slows the growth of grains, which effectively binders the grains, prevents the generation and propagation of cracks, and finally, greatly improves the toughness of the cemented carbides. According to the results observed in the cemented carbides containing different amounts of CoCrNiCuMn, the hardness level gradually increases with the amount of CoCrNiCuMn; however, a reverse trend is seen in the toughness level. The cemented carbide with 10 wt% CoCrNiCuMn shows the highest toughness value of 7.05 MPa·m1/2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Liu N, Zhang X. Effect of WC content on the microstructure and mechanical properties of (Ti, W)(C, N)–Co cermets. Int J Refract Met Hard Mater. 2008;26(1):33.

    Article  Google Scholar 

  2. Voitovich VB, Sverdel VV, Voitovich RF. Oxidation of WC–Co, WC–Ni and WC–Co–Ni hard metals in the temperature range 500–800°C. Int J Refract Met Hard Mater. 1996;14(4):289.

    Article  Google Scholar 

  3. Ji W, Wang W, Wang H. Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics. 2015;56:24.

    Article  Google Scholar 

  4. Tong CJ, Chen MR, Yeh JW, Lin SJ, Chen SK, Shun TT, Chuang SY. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Int J Refract Met Hard Mater. 2005;36(5):1263.

    Google Scholar 

  5. Park S, Kang S. Toughened ultra-fine (Ti, W)(CN)–Ni cermets. Scripta Mater. 2005;52(2):129.

    Article  Google Scholar 

  6. Varalakshmi S, Rao GA, Kamaraj M. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J Mater A Sci. 2010;45(19):5158.

    Article  Google Scholar 

  7. Juan CC, Hsu CY, Tsai CW. On microstructure and mechanical performance of AlCoCrFeMo0.5Ni x high-entropy alloys. Intermetallics. 2013;32:401.

    Article  Google Scholar 

  8. Zhou W, Zheng Y, Zhao Y. Microstructure characterization and mechanical properties of Ti(C, N)-based cermets with AlN addition. Ceram Int. 2015;41(3):5010.

    Article  Google Scholar 

  9. Ettmayer P, Kolaska H, Lengauer W. Ti (C, N) cermets—metallurgy and properties. Int J Refract Met Hard Mater. 1995;13(6):343.

    Article  Google Scholar 

  10. Pastor H. Titanium-carbonitride-based hard alloys for cutting tools. Mat Sci Eng A Struct A. 1988;105–106:401.

    Article  Google Scholar 

  11. Zhang SY. Titanium carbonitride-based cermets: processes and properties. Mat Sci Eng A Struct A. 1993;163(1):141.

    Article  Google Scholar 

  12. Kieffer R, Ettmayer P, Freudhofmeier M. Novel types of nitrides and carbonitrides of hard metals. Metallurgy. 1971;25(5):1335.

    Google Scholar 

  13. Zhang JL, Hong GY. Synthetic chemistry of nonstoichiometric compounds. Cheminform. 2011;42(32):321.

    Google Scholar 

  14. Sun JF. Study on the sintering characteristics and preparation of the non-stoichiometric TiC x and TiN x By mechanical alloying, the preparation. Qinhuangdao: Yanshan University; 2010. 45.

    Google Scholar 

  15. Ji W, Zhang JY, Wang WM, Wang H, Zhang F, Wang YC, Fu ZY. Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J Eur Ceram Soc. 2015;35(3):879.

    Article  Google Scholar 

  16. Zhang KB, Fu ZY, Zhang JY. Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J Alloy Compd. 2010;495(1):33.

    Article  Google Scholar 

  17. Zhu G, Liu Y, Ye J. Early high-temperature oxidation behavior of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder. Int J Refract Met Hard Mater. 2014;44:35.

    Article  Google Scholar 

  18. Ji W, Fu Z, Wang W. Mechanical alloying synthesis and spark plasma sintering consolidation of CoCrFeNiAl high-entropy alloy. J Alloy Compd. 2014;589:61.

    Article  Google Scholar 

  19. Huang PK, Yeh JW, Shun TT, Chen SK. Multi-principal element alloys with improved oxidation and wear resistance for thermal spray coating. Adv Eng Mater. 2004;6(1–2):74.

    Article  Google Scholar 

  20. Hsu CY, Yeh JW, Chen SK, Shun TT. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition. Metall Mater Trans A. 2004;35(5):1465.

    Article  Google Scholar 

  21. Hsu YJ, Chiang WC, Wu JK. Corrosion behavior of FeCoNiCrCu x high-entropy alloys in 3.5% sodium chloride solution. Mater Chem Phys. 2005;92(1):112.

    Article  Google Scholar 

  22. Miracle D, Miller J, Senkov O, Woodward C, Uchic M, Tiley J. Exploration and development of high entropy alloys for structural applications. Entropy. 2014;16(1):494.

    Article  Google Scholar 

  23. Zhang Y, Zhou YJ, Lin JP, Chen GL, Liaw PK. Solid-solution phase formation rules for multi-component alloys. Adv Eng Mater. 2008;10(6):534.

    Article  Google Scholar 

  24. Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J. Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater. 2011;59(1):182.

    Article  Google Scholar 

  25. Praveen S, Anupam A, Sirasani T, Murty BS, Kottada RS. Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans Indian Inst Met. 2013;66(4):369.

    Article  Google Scholar 

  26. He JY, Liu WH, Wang H, Wu Y, Liu XJ, Nieh TG, Lu ZP. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014;62(1):105.

    Article  Google Scholar 

  27. Zhao J. Combinatorial approaches as effective tools in the study of phase diagrams and composition structure property relationships. Prog Mater Sci. 2006;51(5):557.

    Article  Google Scholar 

  28. Wang C, Ji W, Fu Z. Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv Powder Technol. 2014;25(4):1334.

    Article  Google Scholar 

  29. Ajdelsztajn L, Hulbert D, Mukherjee A, Schoenung JM. Creep deformation mechanism of cryomilled NiCrAlY binder coat material. Surf Coat Technol. 2007;201(24):9462.

    Article  Google Scholar 

  30. Evans AG, Clarke DR, Levi CG. The influence of oxides on the performance of advanced gas turbines. J Eur Ceram Soc. 2008;28(7):1405.

    Article  Google Scholar 

  31. Yeh JW, Chang SY, Der Hong Y, Chen SK, Lin SJ. Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multiprincipal elements. Mater Chem Phys. 2007;103(1):41.

    Article  Google Scholar 

  32. Liu Y, Jin YZ, Yu HJ, Ye JW. Ultrafine (Ti, M)(C, N)-based cermets with optimal mechanical properties. Int J Refract Met Hard Mater. 2011;29(1):104.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Hebei Province Natural Science Foundation (No. E2016203425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Zhi Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, ZW., Wang, MZ., Hao, XL. et al. Novel cemented carbide produced with TiN0.3 and high-entropy alloys. Rare Met. 36, 494–500 (2017). https://doi.org/10.1007/s12598-017-0921-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0921-x

Keywords

Navigation