Skip to main content
Log in

Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

To investigate the effect of Nb on the dehydrogenation properties of Mg–Nb composite films, Mg/Nb eight-layer film and Mg-10 at% Nb alloy film with the similar Mg-to-Nb atomic ratio were prepared by magnetron sputtering. Results show that both Mg/Nb eight-layer film and Mg-10 at% Nb alloy film exhibit excellent de/hydrogenation properties. Mg-10 at% Nb alloy film starts to release hydrogen at 108 °C, and its desorption peak temperature is lower to 146 °C, which is much better than that of pure MgH2 under the same condition. Scanning electron microscopy (SEM) results demonstrate that the dispersive Nb nanoparticles in Mg/Nb eight-layer film may serve as nucleation sites for Mg ↔ MgH2 reactions, which can provide channels for H diffusion. For Mg-10 at% Nb alloy film, the uniform distributions of Nb can accelerate the hydrogen diffusion and effectively improve the dehydrogenation kinetics for MgH2. This study provides an enlightening way for designing and preparing Mg-based composite films with excellent dehydrogenation properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jain IP, Lal C, Jain A. Hydrogen storage in Mg: a most promising material. Int J Hydrogen Energy. 2010;35(10):5133.

    Article  Google Scholar 

  2. Sakintuna B, Lamaridarkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrogen Energy. 2007;32(9):1121.

    Article  Google Scholar 

  3. Zhu M, Lu YS, Ouyang LZ, Wang H. Thermodynamic tuning of Mg-based hydrogen storage alloys: a review. Materials. 2013;6(10):4654.

    Article  Google Scholar 

  4. Huot J, Liang G, Boily S, Van Neste A, Schulz R. Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride. J Alloys Compd. 1999;293:495.

    Article  Google Scholar 

  5. Liang G, Huot J, Boily S, Van Neste A, Schulz R. Catalytic effect of transition metals on hydrogen sorption in nanocrystalline ball milled MgH2–Tm (Tm = Ti, V, Mn, Fe and Ni) systems. J Alloys Compd. 1999;292(1–2):247.

    Article  Google Scholar 

  6. Reilly JJ Jr, Wiswall RH Jr. Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4. Inorg Chem. 1968;7(11):2254.

    Article  Google Scholar 

  7. Zhu M, Gao Y, Che XZ, Yang YQ, Chung CY. Hydriding kinetics of nano-phase composite hydrogen storage alloys prepared by mechanical alloying of Mg and MmNi5−x (CoAlMn) x . J Alloys Compd. 2002;330:708.

    Article  Google Scholar 

  8. Gross KJ, Chartouni D, Leroy E, Züttel A, Schlapbach L. Mechanically milled Mg composites for hydrogen storage: the relationship between morphology and kinetics. J Alloys Compd. 1998;269(1–2):259.

    Article  Google Scholar 

  9. Cui J, Liu JW, Wang H, Ouyang LZ, Sun DL, Zhu M, Yao XD. Mg–TM (TM: Ti, Nb, V Co, Mo or Ni) core-shell like nanostructures: synthesis, hydrogen storage performance and catalytic mechanism. J Mater Chem A. 2014;2(25):9645.

    Article  Google Scholar 

  10. Cui J, Wang H, Sun DL, Zhang QA, Zhu M. Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition. Rare Met. 2016;35(5):401.

    Article  Google Scholar 

  11. Bazzanella N, Checchetto R, Miotello A, Sada C, Mazzoldi P, Mengucci P. Hydrogen kinetics in magnesium hydride: on different catalytic effects of niobium. Appl Phys Lett. 2006;89(1):014101.

    Article  Google Scholar 

  12. Fritzsche H, Kalisvaart WP, Zahiri B, Flacau R, Mitlin D. The catalytic effect of Fe and Cr on hydrogen and deuterium absorption in Mg thin films. Int J Hydrogen Energy. 2012;37(4):3540.

    Article  Google Scholar 

  13. Zahiri B, Amirkhiz BS, Danaie M, Mitlin D. Bimetallic Fe–V catalyzed magnesium films exhibiting rapid and cycleable hydrogenation at 200 °C. Appl Phys Lett. 2010;96(1):013108.

    Article  Google Scholar 

  14. Zaluska A, Zaluski L, Ström-Olsen JO. Nanocrystalline magnesium for hydrogen storage. J Alloys Compd. 1999;288(1–2):217.

    Article  Google Scholar 

  15. Checchetto R, Bazzanella N, Miotello A, Mengucci P. Catalytic properties on the hydrogen desorption process of metallic additives dispersed in the MgH2 matrix. J Alloys Compd. 2007;446:58.

    Article  Google Scholar 

  16. de Castro JFR, Santos SF, Costa ALM, Yavari AR, Botta WJ, Ishikawa TT. Structural characterization and dehydrogenation behavior of Mg-5 at% Nb nano-composite processed by reactive milling. J Alloys Compd. 2004;376(1–2):251.

    Article  Google Scholar 

  17. Bazzanella N, Checchetto R, Miotello A. Catalytic effect on hydrogen desorption in Nb-doped microcrystalline MgH2. Appl Phys Lett. 2004;85(22):5212.

    Article  Google Scholar 

  18. Schimmel HG, Huot J, Chapon LC, Tichelaar FD, Mulder FM. Hydrogen cycling of niobium and vanadium catalyzed nanostructured magnesium. J Am Chem Soc. 2005;127(41):14348.

    Article  Google Scholar 

  19. Yavari AR, de Castro JFR, Vaughan G, Heunen G. Structural evolution and metastable phase detection in MgH2–5%NbH nanocomposite during in situ H-desorption in a synchrotron beam. J Alloys Compd. 2003;353(1–2):246.

    Article  Google Scholar 

  20. Shang CX, Bououdina M, Guo ZX. Structural stability of mechanically alloyed (Mg + 10Nb) and (MgH2 + l0Nb) powder mixtures. J Alloys Compd. 2003;349(1–2):217.

    Article  Google Scholar 

  21. Tan XH, Wang LY, Holt CMB, Zahiri B, Eikerling MH, Mitlin D. Body centered cubic magnesium niobium hydride with facile room temperature absorption and four weight percent reversible capacity. Phys Chem Chem Phys. 2012;14(31):10904.

    Article  Google Scholar 

  22. Liu T, Ma XJ, Chen CG, Xu L, Li XG. Catalytic effect of Nb nanoparticles for improving the hydrogen storage properties of Mg-based nanocomposite. J Phys Chem C. 2015;119(25):14029.

    Google Scholar 

  23. Higuchi K, Kajioka H, Toiyama K, Fujii H, Orimo S, Kikuchi Y. In situ study of hydriding–dehydriding properties in some Pd/Mg thin films with different degree of Mg crystallization. J Alloys Compd. 1999;293:484.

    Article  Google Scholar 

  24. Gautam YK, Kumar M, Chandra R. Hydrogen absorption and desorption properties of Pd/Mg/Pd tri-layers prepared by magnetron sputtering. Surf Coat Technol. 2013;237:450.

    Article  Google Scholar 

  25. Higuchi K, Yamamoto K, Kajioka H, Toiyama K, Honda M, Orimo S, Fujii H. Remarkable hydrogen storage properties in three-layered Pd/Mg/Pd thin films. J Alloys Compd. 2002;330:526.

    Article  Google Scholar 

  26. Xin GB, Yang JZ, Wang CY, Zheng J, Li XG. Superior (de) hydrogenation properties of Mg–Ti–Pd trilayer films at room temperature. Dalton Trans. 2012;41(22):6783.

    Article  Google Scholar 

  27. Xin GB, Yang JZ, Zhang GQ, Zheng J, Li XG. Promising hydrogen storage properties and potential applications of Mg–Al–Pd trilayer films under mild conditions. Dalton Trans. 2012;41(38):11555.

    Article  Google Scholar 

  28. Zahiri B, Amirkhiz BS, Mitlin D. Hydrogen storage cycling of MgH2 thin film nanocomposites catalyzed by bimetallic Cr Ti. Appl Phys Lett. 2010;97(8):083106.

    Article  Google Scholar 

  29. Zahiri B, Harrower CT, Shalchi Amirkhiz B, Mitlin D. Rapid and reversible hydrogen sorption in Mg–Fe–Ti thin films. Appl Phys Lett. 2009;95(10):103114.

    Article  Google Scholar 

  30. Mengucci P, Barucca G, Majni G, Bazzanella N, Checchetto R, Miotello A. Structure modification of Mg–Nb films under hydrogen sorption cycles. J Alloys Compd. 2011;509(S2):S572.

    Article  Google Scholar 

  31. Mosaner P, Bazzanella N, Bonelli M, Checchetto R, Miotello A. Mg: Nb films produced by pulsed laser deposition for hydrogen storage. Mater Sci Eng B Solid State Mater Adv Technol. 2004;108(1–2):33.

    Article  Google Scholar 

  32. Shelyapina M, Klukin K, Fruchart D. Modelling of Mg/Ti and Mg/Nb thin films for hydrogen storage. Diffus Defect Data Part B (Solid State Phenom). 2011;170:348.

    Google Scholar 

  33. Pelletier JF, Huot J, Sutton M, Schulz R, Sandy AR, Lurio LB, Mochrie SGJ. Hydrogen desorption mechanism in MgH2–Nb nanocomposites. Phys Rev B. 2001;63(5):052103.

    Article  Google Scholar 

  34. Jin S, Shim J, Ahn J, Cho Y, Yi K. Improvement in hydrogen sorption kinetics of MgH2 with Nb hydride catalyst. Acta Mater. 2007;55(15):701.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51621001, 51571091, and 51471070) and Guangdong Natural Science Foundation (Nos. 2016A030312011 and 2014A030313222).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Wen Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, WC., Yuan, J., Zhang, JG. et al. Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions. Rare Met. 36, 574–580 (2017). https://doi.org/10.1007/s12598-017-0913-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0913-x

Keywords

Navigation