Skip to main content
Log in

An alkaline fusion mechanism for aluminate rare earth phosphor: cation–oxoanion synergies theory

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Waste aluminate rare earth phosphor is an important rare earth elements (REEs) secondary resource, which mainly consists of BaMgAl10O17:Eu2+ (BAM) and CeMgAl11O19:Tb3+ (CMAT). Alkaline fusion process is widely used to recycle REEs from aluminate phosphor, but the related theory remains imperfect. In this paper, a series of alkaline fusion experiments of CMAT were performed to describe the phase change law of CMAT reactions. Based on comprehensive analysis, cation–oxoanion synergies theory (COST) was proposed to explain the aluminate phosphor structure damage. On the mirror plane of aluminate phosphor crystal structure, alkali metal cations (Na+, K+) would substitute rare earth ions, while free oxoanion (OH, CO32−, O22−) can combine with rare earth ions. These two ionic forces ensure that rare earth ions can be substituted by cations. Then, the structure is decomposed. Morphological analysis shows that observable expression of COST can be described by shrinking core model after simplification. Reaction rate constant calculated indicates that the reaction degree is nanometers per second. COST provides a more complete mechanism, and it can help improve rare earth recycling technology furtherly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Binnemans K, Jones PT. Rare earths and the balance problem. J Sustain Metall. 2015;1(1):29.

    Article  Google Scholar 

  2. Nakamura E, Sato K. Managing the scarcity of chemical elements. Nat Mater. 2011;10(3):158.

    Article  Google Scholar 

  3. Sun Z, Xiao Y, Agterhuis H, Sietsma J, Yang Y. Recycling of metals from urban mines—a strategic evaluation. J Clean Prod. 2016;12(1):2977.

    Article  Google Scholar 

  4. Mancheri NA. World trade in rare earths, Chinese export restrictions, and implications. Resour Policy. 2015;46(4):262.

    Article  Google Scholar 

  5. Emsbo P, Mclaughlin PI, Breit GN, Bray EAD, Koenig AE. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis. Gondwana Res. 2015;27(2):776.

    Article  Google Scholar 

  6. Massari S, Ruberti M. Rare earth elements as critical raw materials: focus on international markets and future strategies. Resour Policy. 2013;38(1):36.

    Article  Google Scholar 

  7. Du X, Graedel TE. Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol. 2011;45(9):4096.

    Article  Google Scholar 

  8. Dutta T, Kim KH, Uchimiya M, Kwon EE, Jeon BH, Deep A, Yun ST. Global demand for rare earth resources and strategies for green mining. Environ Res. 2016;150(6):182.

    Article  Google Scholar 

  9. Hatje V, Bruland KW, Flegal AR. Increases in anthropogenic gadolinium anomalies and rare earth element concentrations in San Francisco bay over a 20 year record. Environ Sci Technol. 2016;50(8):4159.

    Article  Google Scholar 

  10. Han W, Li M, Zhang ML, Yan YD. Progress in preparation of rare earth metals and alloys by electrodeposition in molten salts. Rare Met. 2016;35(11):811.

    Article  Google Scholar 

  11. Jüstel T, Nikol H, Ronda C. New developments in the field of luminescent materials for lighting and displays. Angew Chem Int Ed. 1998;37(22):3084.

    Article  Google Scholar 

  12. Rollat A, Guyonnet D, Planchon M, Tuduri J. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon. Waste Manag. 2016;49(8):427.

    Article  Google Scholar 

  13. Bandara HMD, Field KD, Emmert MH. Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem. 2016;18(3):753.

    Article  Google Scholar 

  14. Shokobayev NM, Bouffier C, Dauletbakov TS. Rare earth metals sorption recovery from uranium in situ leaching process solutions. Rare Met. 2015;34(3):195.

    Article  Google Scholar 

  15. Binnemans K, Jones PT. Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J Rare Earths. 2014;32(3):195.

    Article  Google Scholar 

  16. Hirajima T, Sasaki K, Bissombolo A, Hirai H, Hamada M, Tsunekawa M. Feasibility of an efficient recovery of rare earth-activated phosphors from waste fluorescent lamps through dense-medium centrifugation. Sep Purif Technol. 2005;44(3):197.

    Article  Google Scholar 

  17. Wu Y, Yin X, Zhang Q, Wang W, Mu X. The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: a review of processes and technologies. Resour Conserv Recycl. 2014;88(2):7927.

    Google Scholar 

  18. Horikawa T, Machida K. Reuse and recycle processing for rare earth phosphors. Mater Integr. 2011;24(5):37.

    Google Scholar 

  19. Innocenzi V, De MI, Ferella F, Veglio F. Recovery of yttrium from cathode ray tubes and lamps’ fluorescent powders: experimental results and economic simulation. Waste Manag. 2013;3(11):2390.

    Article  Google Scholar 

  20. Habib K, Wenzel H. Exploring rare earths supply constraints for the emerging clean energy technologies and the role of recycling. J Clean Prod. 2014;84(1):348.

    Article  Google Scholar 

  21. Zhenyu T. The status quo of rare-earth three primary colors phosphor for lamps. China Light Light. 2012;5(2):006.

    Google Scholar 

  22. Bizarri G, Moine B. On BaMgAl10:Eu2+ phosphor degradation mechanism: thermal treatment effects. J Lumin. 2005;113(3–4):199.

    Article  Google Scholar 

  23. Kim KB, Kim YI, Chun HG, Cho TY, Jung JS, Kang JG. Structural and optical properties of BaMgAl10O17:Eu2+ phosphor. Chem Mater. 2002;14(12):5045.

    Article  Google Scholar 

  24. Wu Z, Cormack A. Defects in BaMgAl10O17:Eu2+ blue phosphor. J Electroceram. 2003;10(3):179.

    Article  Google Scholar 

  25. Zhang J, Zhang Z, Tang Z, Lin Y. Mn2+ luminescence in (Ce, Tb)MgAl11O19 phosphor. Mater Chem Phys. 2001;72(1):81.

    Article  Google Scholar 

  26. Liu H, Zhang SG, Pan DA, Tian JJ, Yang M, Wu ML, Volinsky AA. Rare earth elements recycling from waste phosphor by dual hydrochloric acid dissolution. J Hazard Mater. 2014;272(10):96.

    Article  Google Scholar 

  27. Wu Y, Wang B, Zhang Q, Li R, Yu J. A novel process for high efficiency recovery of rare earth metals from waste phosphors using a sodium peroxide system. RSC Adv. 2014;4(16):7927.

    Article  Google Scholar 

  28. Zhang SG, Liu H, Pan DA, Tian JJ, Liu YF, Volinsky AA. Complete recovery of Eu from BaMgAl10O17:Eu2+ by alkaline fusion and its mechanism. RSC Adv. 2014;5(2):1113.

    Article  Google Scholar 

  29. Liu YF, Zhang SG, Liu H, Pan DA, Liu B, Volinsky AA, Chang C. Free oxoanion theory for BaMgAl10O17:Eu2+ structure decomposition during alkaline fusion process. RSC Adv. 2015;5(62):50105.

    Article  Google Scholar 

  30. Rajak DK, Guria C, Ghosh R, Agarwal S, Pathak AK. Alkali assisted dissolution of fly ash: a shrinking core model under finite solution volume condition. Int J Miner Process. 2016;155(4):106.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. U1360202, 51472030, 51672024 and 515102014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Gen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YF., Zhang, SG., Liu, B. et al. An alkaline fusion mechanism for aluminate rare earth phosphor: cation–oxoanion synergies theory. Rare Met. 38, 299–305 (2019). https://doi.org/10.1007/s12598-017-0898-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0898-5

Keywords

Navigation