Skip to main content
Log in

Thermal storage properties of Mg with synergistic effect of LaNi and TiH2

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of LaNi and Ti on thermal storage properties of MgH2 was investigated. The thermal storage performances of Mg are significantly improved by adding LaNi and Ti. The pressure–composition–temperature (PCT) curves indicate that the formation enthalpy for Mg-15 wt%Ti-5 wt%LaNi sample is 73.00 kJ·mol−1, which approaches to the theoretical values of pure MgH2. The isothermal measurement indicates that, for the Mg-15 wt%Ti-5 wt%LaNi, the first absorption reaction fraction within 2 min is 93.77%, increasing by 0.32%, 0.24% and 0.08% compared with those for Mg, Mg-5 wt%LaNi and Mg-15 wt%Ti, respectively. The first desorption reaction fraction within 2 min is 73.18%, increasing by 55.91%, 9.79% and 8.12% compared with those for Mg, Mg-5 wt%LaNi and Mg-15 wt%Ti, respectively. Moreover, Mg-15 wt%Ti-5 wt%LaNi has the best cyclic stability in all the samples. The thermal storage performances of Mg by adding both LaNi and Ti are improved mainly ascribed to synergistic effect of in situ formed La4H12.19, Mg2NiH4, H0.3Mg2Ni and TiH2 particles during cyclic process. The above analysis demonstrates that Mg-15 wt%Ti-5 wt%LaNi is suitable for using as a heat storage material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harries DN, Paskevicius M, Sheppard DA, Price TEC, Buckley CE. Concentrating solar thermal heat storage using metal hydrides. Proc IEEE. 2012;100(2):539.

    Article  CAS  Google Scholar 

  2. Zhao DL, Zhang YH. Research process in Mg-based hydrogen storage alloys. Rare Met. 2014;33(5):499.

    Article  CAS  Google Scholar 

  3. Juahir N, Mustafa NS, Sinin AM, Ismail M. Improved hydrogen storage properties of MgH2 by addition of Co2NiO nanoparticles. RSC Adv. 2015;5(75):60983.

    Article  CAS  Google Scholar 

  4. Liu YF, Du HF, Zhang X, Yang YX, Gao MX, Pan HG. Superior catalytic activity derived from a two-dimensional Ti3C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem Commun. 2016;52(4):705.

    Article  Google Scholar 

  5. Liu HX, Wu C, Zhou H, Chen T, Liu YG, Wang XH, Dong ZH, Ge HW, Li SQ, Yan M. Synergistically thermodynamic and kinetic tailoring of the hydrogen desorption properties of MgH2 by co-addition of AlH3 and CeF3. RSC Adv. 2015;5(28):22091.

    Article  CAS  Google Scholar 

  6. Wan Q, Li P, Shan JW, Zhai FQ, Li ZL, Qu XH. Superior catalytic effect of nickel ferrite nanoparticles in improving hydrogen storage properties of MgH2. J Phys Chem C. 2015;119(6):2925.

    Article  CAS  Google Scholar 

  7. Zhang JQ, Zhu YF, Zang XX, Huan QQ, Su W, Zhu DL, Li LQ. Nickel-decorated grapheme nanoplates for enhanced H2 sorption properties of magnesium hydride at moderate temperatures. J Mater Chem A. 2016;4(7):2560.

    Article  CAS  Google Scholar 

  8. Zhang J, Shan JW, Li P, Zhai FQ, Wan Q, Liu ZJ, Qu XH. Dehydrogenation mechanism of ball-milled MgH2 doped with ferrites (CoFe2O4, ZnFe2O4, MnFe2O4 and Mn0.5Zn0.5Fe2O4) nanoparticles. J Alloys Compd. 2015;643(15):174.

    Article  CAS  Google Scholar 

  9. Shan JW, Li P, Wan Q, Zhai FQ, Zhang J, Li ZL, Liu ZJ, Volinsky AA, Qu XH. Significantly improved dehydrogenation of ball-milled MgH2 doped with CoFe2O4 nanoparticles. J Power Sour. 2014;268(5):778.

    Article  CAS  Google Scholar 

  10. Hwang SJ, Chuang YS. Enhanced hydrogen storage properties of MgH2 co-catalyzed with zirconium oxide and single-walled carbon nanotubes. J Alloys Compd. 2016;664(15):284.

    Article  CAS  Google Scholar 

  11. Ismail M, Mustafa NS, Juahir N, Halim Yap FA. Catalytic effect of CeCl3 on the hydrogen storage properties of MgH2. Mater Chem Phys. 2016;170(15):77.

    Article  CAS  Google Scholar 

  12. Wang Y, Zhang QY, Wang YJ, Jiao LF, Yuan HT. Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2. J Alloys Compd. 2015;645(S1):S509.

    Article  CAS  Google Scholar 

  13. Ismail M. Effect of LaCl3 addition on the hydrogen storage properties of MgH2. Energy. 2015;79(1):177.

    Article  CAS  Google Scholar 

  14. Paskevicius M, Sheppard DA, Buckley CE. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc. 2010;132(14):5077.

    Article  CAS  Google Scholar 

  15. Rongeat C, Jansa IL, Doppiu S, Deledda S, Borgschulte A, Schultz L, Gutfleisch O. Determination of the heat of hydride formation/decomposition by high-pressure differential scanning calorimetry (HP-DSC). J Phys Chem B. 2007;111(46):13301.

    Article  CAS  Google Scholar 

  16. Wang H, Hu J, Han FG, Lu YS, Liu JW, Ouyang LZ, Zhu M. Enhanced joint catalysis of YH2/Y2O3 on dehydrogenation of MgH2. J Alloys Compd. 2015;645(S1):S209.

    Article  CAS  Google Scholar 

  17. Zhang Y, Zhuang XY, Zhu YF, Wan N, Li LQ, Dong J. Synergistic effects of TiH2 and Pd on hydrogen desorption performances of MgH2. Int J Hydrogen Energy. 2015;40(46):16338.

    Article  CAS  Google Scholar 

  18. Xiao XZ, Xu CC, Shao J, Zhang LT, Qin T, Li SQ, Ge HW, Wang QD, Chen LX. Remarkable hydrogen desorption properties and mechanisms of the Mg2FeH6@MgH2 core-shell nanostructure. J Mater Chem A. 2015;3(10):5517.

    Article  CAS  Google Scholar 

  19. Tan YJ, Mao QF, Su W, Zhu YF, Li LQ. Remarkable hydrogen storage properties at low temperature of Mg–Ni composites prepared by hydriding combustion synthesis and mechanical milling. RSC Adv. 2015;5(78):63202.

    Article  CAS  Google Scholar 

  20. Liu T, Chen CG, Wang H, Wu Y. Enhanced hydrogen storage properties of Mg–Ti–V nanocomposite at moderate temperatures. J Phys Chem C. 2014;118(39):22419.

    Article  CAS  Google Scholar 

  21. Motavalli A, Rajabi M. Catalytic effect of melt-spun Ni3FeMn alloy on hydrogen desorption properties of nanocrystalline MgH2 synthesized by mechanical alloying. Int J Hydrogen Energy. 2014;39(30):17047.

    Article  CAS  Google Scholar 

  22. Calizzi M, Venturi F, Ponthieu M, Cuevas F, Morandi V, Perkisas T, Bals S, Pasquini L. Gas-phase synthesis of Mg–Ti nanoparticles for solid-state hydrogen storage. Phys Chem Chem Phys. 2016;18(1):141.

    Article  CAS  Google Scholar 

  23. Chen J, Xia GL, Guo ZP, Huang ZG, Liu HK, Yu XB. Porous Ni nanofibers with enhanced catalytic effect on the hydrogen storage performance of MgH2. J Mater Chem A. 2015;3(31):15843.

    Article  CAS  Google Scholar 

  24. Song MY, Kwon SN, Mumm DR, Hong SH. Development of Mg–oxide–Ni hydrogen-storage alloys by reactive mechanical grinding. Int J Hydrogen Energy. 2007;32(16):3921.

    Article  CAS  Google Scholar 

  25. Lu J, Choi YJ, Fang ZZ, Sohn HY, Rönnebro E. Hydrogen storage properties of nanosized MgH2-0.1 TiH2 prepared by ultrahigh-energy-high-pressure milling. J Am Chem Soc. 2009;131(43):15843.

    Article  CAS  Google Scholar 

  26. Liu T, Chen CG, Qin CG, Li XG. Improved hydrogen storage properties of Mg-based nanocomposite by addition of LaNi5 nanoparticles. Int J Hydrogen Energy. 2014;39(32):18273.

    Article  CAS  Google Scholar 

  27. Cuevas F, Korablov D, Latroche M. Synthesis, structural and hydrogenation properties of Mg-rich MgH2–TiH2 nanocomposites prepared by reactive ball milling under hydrogen gas. Phys Chem Chem Phys. 2012;14(3):1200.

    Article  CAS  Google Scholar 

  28. Bogdanovic B, Hofmann H, Neuy A, Reiser A, Schlichte K, Spliethoff B, Wessel S. Ni-doped versus undoped Mg–MgH2 materials for high temperature heat or hydrogen storage. J Alloys Compd. 1999;292(1–2):57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Beijing Municipal Commission of Science and Technology of China (D141100002014001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, Q., Jiang, LJ., Li, ZN. et al. Thermal storage properties of Mg with synergistic effect of LaNi and TiH2. Rare Met. 42, 1743–1751 (2023). https://doi.org/10.1007/s12598-016-0858-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0858-5

Keywords

Navigation