Skip to main content
Log in

Processing maps and microstructural evolution of Al–Cu–Li alloy during hot deformation

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The hot deformation behavior of Al–Cu–Li alloy was investigated by hot compression tests in the temperature range of 340–500 °C with strain rate of 0.001–10.000 s−1. Based on the dynamic materials model (DMM), processing maps of the test alloy were developed for optimizing hot processing parameters. The optimum parameters of hot deformation for Al–Cu–Li alloy are at temperature of 400–430 °C and strain rate of about 0.100 s−1, with efficiency of power dissipation of around 30%. The microstructural manifestation of the alloy deformed in instability domains is flow localization, and dynamic softening first occurs in flow localizations structure. In stable domains, dynamic recovery (DRV) and dynamic recrystallization (DRX) are the main microstructural evolution mechanism. DRX is gradually strengthened with the increase in deformation temperature and the decrease in strain rate. During hot deformation, the DRX mechanism of Al–Cu–Li alloy is dominated by continuous DRX (CDRX). A DRX model of Al–Cu–Li alloy is proposed based on the microstructural evolution process of the test alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pasang T, Symonds N, Moutsos S, Wanhill RJH, Lynch SP. Low-energy intergranular fracture in Al–Li alloys. Eng Fail Anal. 2012;22(6):166.

    Article  CAS  Google Scholar 

  2. Qin HL, Zhang H, Wu HQ. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy. Mater Sci Eng, A. 2015;626(3):322.

    Article  CAS  Google Scholar 

  3. Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng, A. 2000;280(1):102.

    Article  Google Scholar 

  4. Alexopoulos ND, Migklis M, Stylianos A, Myriounis DP. Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading. Int J Fatigue. 2013;56(11):95.

    Article  CAS  Google Scholar 

  5. Li HZ, Wang HJ, Liang XP, Liu HT, Liu Y, Zhang XM. Hot deformation and processing map of 2519A aluminum alloy. Mater Sci Eng A. 2011;528(3):1548.

    Article  Google Scholar 

  6. Wu HY, Wu CT, Yang JC, Lin MJ. Hot workability analysis of AZ61 Mg alloys with processing maps. Mater Sci Eng A. 2014;607(9):261.

    Article  CAS  Google Scholar 

  7. Peng XN, Guo HZ, Shi ZF, Qin C, Zhao ZL, Yao ZK. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α + β starting structure based on processing map. Mater Sci Eng A. 2014;605(4):80.

    Article  CAS  Google Scholar 

  8. Yin H, Li HY, Su XJ, Huang DS. Processing maps and microstructural evolution of isothermal compressed Al–Cu–Li alloy. Mater Sci Eng A. 2013;586(6):115.

    Article  CAS  Google Scholar 

  9. Jagan Reddy G, Srinivasan N, Gokhale Amol A, Kashyap BP. Processing map for hot working of spray formed and hot isostatically pressed Al–Li alloy (UL40). J Mater Process Technol. 2009;209(18):5964.

    Article  CAS  Google Scholar 

  10. Nayan N, Gurao NP, Narayana Murty SVS, Jha Abhay K, Pant B, Sharma SC, George Koshy M. Microstructure and micro-texture evolution during large strain deformation of an aluminium-copper-lithium alloy AA 2195. Mater Des. 2015;65(10):862.

    Article  CAS  Google Scholar 

  11. Xun Y, Tan MJ. EBSD characterization of 8090 Al–Li alloy during dynamic and static recrystallization. Mater Charact. 2004;52(3):187.

    Article  CAS  Google Scholar 

  12. Sakai T, Miura H, Goloborodko A, Sitdikov O. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475. Acta Mater. 2009;57(1):153.

    Article  CAS  Google Scholar 

  13. Sitdikov O, Sakai T, Goloborodko A, Miura H. Grain fragmentation in a coarse-grained 7475 Al alloy during hot deformation. Scripta Mater. 2004;51(2):175.

    Article  CAS  Google Scholar 

  14. Li JQ, Liu J, Cui ZS. Characterization of hot deformation behavior of extruded ZK60 magnesium alloy using 3D processing maps. Mater Des. 2014;56(4):889.

    Article  CAS  Google Scholar 

  15. Jenab A, Karimi Taheri A. Experimental investigation of the hot deformation behavior of AA7075: development and comparison of flow localization parameter and dynamic material model processing maps. Int J Mech Sci. 2014;78(1):97.

    Article  Google Scholar 

  16. Li DH, Yang Y, Xu T, Zheng HQ, Zhu QS, Zhang QM. Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy. Mater Sci Eng A. 2010;527(15):3529.

    Article  Google Scholar 

  17. Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press; 2000. 427.

    Google Scholar 

  18. Doherty RD, Hughes DA, Humpherys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238(2):219.

    Article  Google Scholar 

  19. Prasad YVRK. Processing maps: a status report. J Mater Eng Perform. 2003;12(6):638.

    Article  CAS  Google Scholar 

  20. Lin YC, Li LT, Xia YC, Jiang YQ. Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J Alloy Compd. 2013;550(6):438.

    Article  CAS  Google Scholar 

  21. Kapoor R, Shekhawat SK, Samajdar I. Flow localization in an Al–2.5Mg alloy after severe plastic deformation. Mater Sci Eng A. 2014;611(9):114.

    Article  CAS  Google Scholar 

  22. Reddy GJ, Srinivasan N, Gokhale AA, Kashyap BP. Characterisation of dynamic recovery during hot deformation of spray formed Al–Li alloy (UL40) using processing map approach. Mater Sci Technol. 2008;24(6):725.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Program on Key Basic Research Project of China (No. 2012CB619504) and the National Natural Science Foundation of China (No. 51274046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SL., Shen, J., Zhang, YA. et al. Processing maps and microstructural evolution of Al–Cu–Li alloy during hot deformation. Rare Met. 38, 1136–1143 (2019). https://doi.org/10.1007/s12598-016-0851-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0851-z

Keywords

Navigation