Skip to main content
Log in

Large magnetic refrigerant capacity of HoFe1−xCoxAl (x = 0, 0.3) compounds

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Magnetic and magnetocaloric properties of HoFe1−xCoxAl (x = 0, 0.3) were investigated. Both HoFeAl and HoFe0.7Co0.3Al undergo a second-order ferromagnetic (FIM) to paramagnetic (PM) transition at Curie temperatures (T C) of 87 and 82 K, respectively. The magnetocaloric effect is improved by the introduction of Co in HoFeAl compound. For a field change from 0 to 5 T, the maximum values of magnetic entropy change (−ΔS M) are 7.0 J·kg−1·K−1 for HoFeAl and 8.6 J·kg−1·K−1 for HoFe0.7Co0.3Al. In addition, the refrigerant capacity (RC) is enhanced largely from 416.2 J·kg−1 for HoFeAl to 561.9 J·kg−1 for HoFe0.7Co0.3Al. This large RC is attributed to the large ΔS M and the wide temperature span of ΔS M peak in HoFe0.7Co0.3Al compound. The physical mechanism of improvement in magnetocaloric effect by Co substitution in HoFeAl was also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gschneidner KA Jr, Pecharsky VK, Tsokol AO. Recent developments in magnetocaloric materials. Rep Prog Phys. 2005;68(6):1479.

    Article  CAS  Google Scholar 

  2. Shen BG, Sun JR, Hu FX, Zhang HW, Chen ZH. Recent progress in exploring magnetocaloric materials. Adv Mater. 2009;21(45):4545.

    Article  CAS  Google Scholar 

  3. Wada H, Tanabe Y. Giant magnetocaloric effect of MnAs1−xSbx. Appl Phys Lett. 2001;79(20):3302.

    Article  CAS  Google Scholar 

  4. Gama S, Coelho AA, de Campos A, Carvalho AMG, Gandra FCG. Pressure-induced colossal magnetocaloric effect in MnAs. Phys Rev Lett. 2004;93(23):237202.

    Article  Google Scholar 

  5. Tegus O, Brück E, Buschow KHJ, de Boer FR. Transition-metal-based magnetic refrigerants for room-temperature applications. Nature. 2002;415:150.

    Article  CAS  Google Scholar 

  6. Hu FX, Shen BG, Sun JR. Magnetic entropy change in Ni51.5Mn22.7Ga25.8 alloy. Appl Phys Lett. 2000;76(23):3460.

    Article  CAS  Google Scholar 

  7. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater. 2005;4(6):450.

    Article  CAS  Google Scholar 

  8. Liu J, Gottschall T, Skokov KP, Moore JD, Gutfleisch O. Giant magnetocaloric effect driven by structural transitions. Nat Mater. 2012;11(5):620.

    Article  CAS  Google Scholar 

  9. Gupta S, Suresh KG. Review on magnetic and related properties of RTX compounds. J Alloy Compd. 2015;618:562.

    Article  CAS  Google Scholar 

  10. Oesterreicher H. Structural studies of rare-earth compounds RFeAl. J Less Common Met. 1971;25(3):341.

    Article  CAS  Google Scholar 

  11. Oesterreicher H. Magnetic properties of scatter order compounds RFeAl (R = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y). Phys Status Solidi (a). 1977;40(2):K139.

    Article  CAS  Google Scholar 

  12. Oesterreicher H. Magnetic studies on TbFeAl. Phys Status Solidi (a). 1971;7(1):K55.

    Article  CAS  Google Scholar 

  13. Oesterreicher H. Structural, magnetic and neutron diffraction studies on TbFe2–TbAl2, TbCo2–TbAl2 and HoCo2–HoAl2. J Phys Chem Solids. 1973;34(7):1267.

    Article  CAS  Google Scholar 

  14. Mican S, Benea D, Tetean R. Magnetism and large magnetocaloric effect in HoFe2−xAlx. J Alloy Compd. 2013;549:64.

    Article  CAS  Google Scholar 

  15. Dong QY, Shen BG, Chen J, Shen J, Zhang HW, Sun JR. Magnetic entropy change and refrigerant capacity in GdFeAl compound. J Appl Phys. 2009;105(7):07A305.

    Article  Google Scholar 

  16. Li LW, Huo DX, Qian ZH, Nishimura K. Study of the critical behavior and magnetocaloric effect in DyFeAl. Intermetallics. 2014;46:231.

    Article  Google Scholar 

  17. Zhang YK, Wilde G, Li X, Ren ZM, Li LW. Magnetism and magnetocaloric effect in the ternary equiatomic REFeAl (RE = Er and Ho) compounds. Intermetallics. 2015;65:61.

    Article  CAS  Google Scholar 

  18. Kaštil J, Javorský P, Kamarád J, Diop LVB, Isnard O, Arnold Z. Magnetic and magnetocaloric properties of partially disordered RFeAl (R = Gd, Tb) intermetallic. Intermetallics. 2014;54:15.

    Article  Google Scholar 

  19. Zhang XX, Wang FW, Wen GH. Magnetic entropy change in RCoAl (R = Gd, Tb, Dy, and Ho) compounds. J Phys Condens Mater. 2001;13(31):L747.

    Article  CAS  Google Scholar 

  20. Oesterreicher H, Roland P. Structural and magnetic studies on DyFe2–DyAl2 and DyCo2–DyAl2. J Appl Phys. 1972;43(12):5174.

    Article  CAS  Google Scholar 

  21. Zhang H, Shen BG, Xu ZY, Shen J, Hu FX, Sun JR, Long Y. Large reversible magnetocaloric effects in ErFeSi compound under low magnetic field change around liquid hydrogen temperature. Appl Phys Lett. 2013;102(9):092401.

    Article  Google Scholar 

  22. Banerjee SK. On a generalized approach to first and second order magnetic transitions. Phys Lett. 1964;12(1):16.

    Article  Google Scholar 

  23. Franco V, Blázquez JS, Ingale B, Conde A. Magnetocaloric effect and magnetic refrigeration near room temperature. Annu Rev Mater Res. 2012;42:305.

    Article  CAS  Google Scholar 

  24. Zheng XQ, Chen J, Shen J, Zhang H, Xu ZY, Gao WW, Wu JF, Hu FX, Sun JR, Shen BG. Large refrigerant capacity of RGa (R = Tb and Dy) compounds. J Appl Phys. 2012;111(7):07A917.

    Article  Google Scholar 

  25. Chen J, Shen BG, Dong QY, Sun JR. Giant magnetocaloric effect in HoGa compound over a large temperature span. Solid States Commun. 2010;150(3–4):157.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Fundamental Research Funds from National Institute of Metrology (Nos. 35-ALC1514-15 and 35-AHY1323-13) and the National Natural Science Foundation of China (No. 51402031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Yi Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZY., Zhang, ZG., Gao, RL. et al. Large magnetic refrigerant capacity of HoFe1−xCoxAl (x = 0, 0.3) compounds. Rare Met. 40, 1–5 (2021). https://doi.org/10.1007/s12598-016-0829-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0829-x

Keywords

Navigation